9,212 research outputs found

    Improved constraints on primordial non-Gaussianity for the Wilkinson Microwave Anisotropy Probe 5-yr data

    Get PDF
    We present new constraints on the non-linear coupling parameter fnl with the Wilkinson Microwave Anisotropy Probe (WMAP) data. We use an updated method based on the spherical Mexican hat wavelet (SMHW) which provides improved constraints on the fnl parameter. This paper is a continuation of a previous work by Curto et al. where several third order statistics based on the SMHW were considered. In this paper, we use all the possible third order statistics computed from the wavelet coefficient maps evaluated at 12 angular scales. The scales are logarithmically distributed from 6.9 arcmin to 500 arcmin. Our analysis indicates that fnl is constrained to -18 < fnl < +80 at 95% confidence level (CL) for the combined V+W WMAP map. This value has been corrected by the presence of undetected point sources, which adds a positive contribution of Delta_fnl = 6 +- 5. Our result excludes at ~99% CL the best-fitting value fnl=87 reported by Yadav & Wandelt. We have also constrained fnl for the Q, V and W frequency bands separately, finding compatibility with zero at 95 % CL for the Q and V bands but not for the W band. We have performed some further tests to understand the cause of this deviation which indicate that systematics associated to the W radiometers could be responsible for this result. Finally we have performed a Galactic North-South analysis for fnl. We have not found any asymmetry, i.e. the best-fitting fnl for the northern pixels is compatible with the best-fitting fnl for the southern pixels.Comment: 6 pages, 4 figures, 4 tables. Accepted for publication in Ap

    Non-Gaussianity from Inflation: Theory and Observations

    Get PDF
    This is a review of models of inflation and of their predictions for the primordial non-Gaussianity in the density perturbations which are thought to be at the origin of structures in the Universe. Non-Gaussianity emerges as a key observable to discriminate among competing scenarios for the generation of cosmological perturbations and is one of the primary targets of present and future Cosmic Microwave Background satellite missions. We give a detailed presentation of the state-of-the-art of the subject of non-Gaussianity, both from the theoretical and the observational point of view, and provide all the tools necessary to compute at second order in perturbation theory the level of non-Gaussianity in any model of cosmological perturbations. We discuss the new wave of models of inflation, which are firmly rooted in modern particle physics theory and predict a significant amount of non-Gaussianity. The review is addressed to both astrophysicists and particle physicists and contains useful tables which summarize the theoretical and observational results regarding non-Gaussianity.Comment: LaTeX file: 218 pages, 19 figures. Replaced to match the accepted version in Physics Reports. A high-resolution version of Fig. 2 can be downloaded from: http://www.pd.infn.it/~liguori/Non_Gaussianity

    Revising the multipole moments of numerical spacetimes, and its consequences

    Full text link
    Identifying the relativistic multipole moments of a spacetime of an astrophysical object that has been constructed numerically is of major interest, both because the multipole moments are intimately related to the internal structure of the object, and because the construction of a suitable analytic metric that mimics a numerical metric should be based on the multipole moments of the latter one, in order to yield a reliable representation. In this note we show that there has been a widespread delusion in the way the multipole moments of a numerical metric are read from the asymptotic expansion of the metric functions. We show how one should read correctly the first few multipole moments (starting from the quadrupole mass-moment), and how these corrected moments improve the efficiency of describing the metric functions with analytic metrics that have already been used in the literature, as well as other consequences of using the correct moments.Comment: article + supplemental materia

    Oscillations and instabilities of fast and differentially rotating relativistic stars

    Full text link
    We study non-axisymmetric oscillations of rapidly and differentially rotating relativistic stars in the Cowling approximation. Our equilibrium models are sequences of relativistic polytropes, where the differential rotation is described by the relativistic jj-constant law. We show that a small degree of differential rotation raises the critical rotation value for which the quadrupolar f-mode becomes prone to the CFS instability, while the critical value of T/WT/|W| at the mass-shedding limit is raised even more. For softer equations of state these effects are even more pronounced. When increasing differential rotation further to a high degree, the neutral point of the CFS instability first reaches a local maximum and is lowered afterwards. For stars with a rather high compactness we find that for a high degree of differential rotation the absolute value of the critical T/WT/|W| is below the corresponding value for rigid rotation. We conclude that the parameter space where the CFS instability is able to drive the neutron star unstable is increased for a small degree of differential rotation and for a large degree at least in stars with a higher compactness.Comment: 16 pages, 11 figures; paper accepted for publication in Phys. Rev. D (81.084019

    Measuring patchy reionisation with kSZ2^2-21 cm correlations

    Full text link
    We study cross-correlations of the kinetic Sunyaev-Zel'dovich effect (kSZ) and 21 cm signals during the epoch of reionisation (EoR) to measure the effects of patchy reionisation. Since the kSZ effect is proportional to the line-of-sight velocity, the kSZ-21 cm cross correlation suffers from cancellation at small angular scales. We thus focus on the correlation between the kSZ-squared field (kSZ2^2) and 21 cm signals. When the global ionisation fraction is low (xe0.7x_e\lesssim 0.7), the kSZ2^2 fluctuation is dominated by rare ionised bubbles which leads to an anti-correlation with the 21 cm signal. When 0.8xe<10.8\lesssim x_e<1, the correlation is dominated by small pockets of neutral regions, leading to a positive correlation. However, at very high redshifts when xe<0.15x_e<0.15, the spin temperature fluctuations change the sign of the correlation from negative to positive, as weakly ionised regions can have strong 21 cm signals in this case. To extract this correlation, we find that Wiener filtering is effective in removing large signals from the primary CMB anisotropy. The expected signal-to-noise ratios for a \sim10-hour integration of upcoming Square Kilometer Array data cross-correlated with maps from the current generation of CMB observatories with 3.4~μ\muK arcmin noise and 1.7~arcmin beam over 100~deg2^2 are 51, 60, and 37 for xe=0.2x_e=0.2, 0.5, and 0.9, respectively.Comment: 7pages, 7 figure

    Modeling Hybrid Stars with an SU(3) non-linear sigma model

    Full text link
    We study the behavior of hybrid stars using an extended hadronic and quark SU(3) non-linear sigma model. The degrees of freedom change naturally, in this model, from hadrons to quarks as the density/temperature increases. At zero temperature, we reproduce massive neutron stars containing a core of hybrid matter of 2 km for the non-rotating case and 1.18 km and 0.87 km, in the equatorial and polar directions respectively, for stars rotating at the Kepler frequency (physical cases lie in between). The cooling of such stars is also analyzed.Comment: Revised version, references and figures added. Accepted for publication in Physical Review

    Kink Solution in a Fluid Model of Traffic Flows

    Full text link
    Traffic jam in a fluid model of traffic flows proposed by Kerner and Konh\"auser (B. S. Kerner and P. Konh\"auser, Phys. Rev. E 52 (1995), 5574.) is analyzed. An analytic scaling solution is presented near the critical point of the hetero-clinic bifurcation. The validity of the solution has been confirmed from the comparison with the simulation of the model.Comment: RevTeX v3.1, 6 pages, and 2 figure

    Cosmological Lower Bound on Dark Matter Masses from the Soft Gamma-ray Background

    Full text link
    Motivated by a recent detection of 511 keV photons from the center of our Galaxy, we calculate the spectrum of the soft gamma-ray background of the redshifted 511 keV photons from cosmological halos. Annihilation of dark matter particles into electron-positron pairs makes a substantial contribution to the gamma-ray background. Mass of such dark matter particles must be <~ 100 MeV so that resulting electron-positron pairs are on-relativistic. On the other hand, we show that in order for the annihilation not to exceed the observed background, the dark matter mass needs to be >~ 20 MeV. We include the contribution from the active galactic nuclei and supernovae. The halo substructures may increase the lower bound to >~ 60 MeV.Comment: 5 pages, 5 figures; accepted for publication in PRD, Rapid Communicatio

    An expression for stationary distribution in nonequilibrium steady state

    Full text link
    We study the nonequilibrium steady state realized in a general stochastic system attached to multiple heat baths and/or driven by an external force. Starting from the detailed fluctuation theorem we derive concise and suggestive expressions for the corresponding stationary distribution which are correct up to the second order in thermodynamic forces. The probability of a microstate η\eta is proportional to exp[Φ(η)]\exp[{\Phi}(\eta)] where Φ(η)=kβkEk(η){\Phi}(\eta)=-\sum_k\beta_k\mathcal{E}_k(\eta) is the excess entropy change. Here Ek(η)\mathcal{E}_k(\eta) is the difference between two kinds of conditioned path ensemble averages of excess heat transfer from the kk-th heat bath whose inverse temperature is βk\beta_k. Our expression may be verified experimentally in nonequilibrium states realized, for example, in mesoscopic systems.Comment: 4 pages, 2 figure
    corecore