17 research outputs found

    Self-consistent 3D radiative MHD simulations of coronal rain formation and evolution

    Get PDF
    Context. Coronal rain consists of cool and dense plasma condensations formed in coronal loops as a result of thermal instability. Aims. Previous numerical simulations of thermal instability and coronal rain formation have relied on the practice of artificially adding a coronal heating term to the energy equation. To reproduce large-scale characteristics of the corona, the use of more realistic coronal heating prescription is necessary. Methods. We analysed coronal rain formation and evolution in a three-dimensional radiative magnetohydrodynamic simulation spanning from convection zone to corona which is self-consistently heated by magnetic field braiding as a result of convective motions. Results. We investigate the spatial and temporal evolution of energy dissipation along coronal loops which become thermally unstable. Ohmic dissipation in the model leads to the heating events capable of inducing sufficient chromospheric evaporation into the loop to trigger thermal instability and condensation formation. The cooling of the thermally unstable plasma occurs on timescales that are comparable to the duration of the individual impulsive heating events. The impulsive heating has sufficient duration to trigger thermal instability in the loop but does not last long enough to lead to coronal rain limit cycles. We show that condensations can either survive and fall into the chromosphere or be destroyed by strong bursts of Joule heating associated with a magnetic reconnection events. In addition, we find that condensations can also form along open magnetic field lines. Conclusions. We modelled, for the first time, coronal rain formation in a self-consistent 3D radiative magnetohydrodynamic simulation, in which the heating occurs mainly through the braiding and subsequent Ohmic dissipation of the magnetic field. The heating is stratified enough and lasts for long enough along specific field lines to produce the necessary chromospheric evaporation that triggers thermal instability in the corona

    Evaluating the Skill of Forecasts of the Near-Earth Solar Wind using a Space Weather Monitor at L5

    Get PDF
    Forecasting space weather is an essential activity for increasing the resilience of modern technological infrastructure to hazards from the Sun. To provide an accurate forecast, space weather monitors positioned at L5 are proposed that carry in‐situ plasma detectors. Here, we use data from the STEREO and ACE missions to investigate how well it is possible to predict the solar wind when there are two spacecraft located with the same longitudinal separation as from L5 to Earth. There are four intervals when this is the case; STEREO‐to‐STEREO both on Earth's side and the far side of the Sun, STEREO‐B to ACE and ACE to STEREO‐A. We forecast the solar wind by mapping the observed solar wind at the first spacecraft to the second using a time delay calculated using the spacecraft's heliographic longitudinal separation and the difference in radial distance from the Sun, allowing for the solar wind speed. Using forecasting skill scores, we find that the predicted and observed solar wind data are, in general, in very good agreement for each of the four periods, including observed co‐rotating interaction regions (CIRs). However, there are some notable exceptions when CIRs have been missed by the forecast. The skill improves further for all time periods when removing coronal mass ejections which cannot be predicted in this method. We suggest that an L5 monitor should be located at the same heliographic latitude as Earth to optimise the forecasting ability of the monitor and to reduce the chance of missing important events

    Using gradient boosting regression to improve ambient solar wind model predictions

    Get PDF
    Studying the ambient solar wind, a continuous pressure‐driven plasma flow emanating from our Sun, is an important component of space weather research. The ambient solar wind flows in interplanetary space determine how solar storms evolve through the heliosphere before reaching Earth, and especially during solar minimum are themselves a driver of activity in the Earth’s magnetic field. Accurately forecasting the ambient solar wind flow is therefore imperative to space weather awareness. Here we present a machine learning approach in which solutions from magnetic models of the solar corona are used to output the solar wind conditions near the Earth. The results are compared to observations and existing models in a comprehensive validation analysis, and the new model outperforms existing models in almost all measures. In addition, this approach offers a new perspective to discuss the role of different input data to ambient solar wind modeling, and what this tells us about the underlying physical processes. The final model discussed here represents an extremely fast, well‐validated and open‐source approach to the forecasting of ambient solar wind at Earth

    Excitation and evolution of coronal oscillations in self-consistent 3D radiative MHD simulations of the solar atmosphere

    No full text
    Context. Solar coronal loops are commonly subject to oscillations. Observations of coronal oscillations are used to infer physical properties of the coronal plasma using coronal seismology. Aims. Excitation and evolution of oscillations in coronal loops is typically studied using highly idealised models of magnetic flux tubes. In order to improve our understanding of coronal oscillations, it is necessary to consider the effect of realistic magnetic field topology and evolution. Methods. We study excitation and evolution of coronal oscillations in three-dimensional (3D) self-consistent simulations of solar atmosphere spanning from the convection zone to the solar corona using the radiation-magnetohydrodynamic (MHD) code Bifrost. We use forward-modelled extreme-ultraviolet emission and 3D tracing of magnetic field to analyse the oscillatory behaviour of individual magnetic loops. We further analyse the evolution of individual plasma velocity components along the loops using wavelet power spectra to capture changes in the oscillation periods. Results. Various types of oscillations commonly observed in the corona are present in the simulation. We detect standing oscillations in both transverse and longitudinal velocity components, including higher-order oscillation harmonics. We also show that self-consistent simulations reproduce the existence of two distinct regimes of transverse coronal oscillations: rapidly decaying oscillations triggered by impulsive events and sustained small-scale oscillations showing no observable damping. No harmonic drivers are detected at the footpoints of oscillating loops. Conclusions. Coronal loop oscillations are abundant in self-consistent 3D MHD simulations of the solar atmosphere. The dynamic evolution and variability of individual magnetic loops suggest that we need to re-evaluate our models of monolithic and static coronal loops with constant lengths in favour of more realistic models

    High-resolution observations of the solar photosphere, chromosphere, and transition region

    Get PDF
    NASA’s Interface Region Imaging Spectrograph (IRIS) provides high-resolution observations of the solar atmosphere through ultraviolet spectroscopy and imaging. Since the launch of IRIS in June 2013, we have conducted systematic observation campaigns in coordination with the Swedish 1 m Solar Telescope (SST) on La Palma. The SST provides complementary high-resolution observations of the photosphere and chromosphere. The SST observations include spectropolarimetric imaging in photospheric Fe 
    corecore