858 research outputs found

    Minimally-destructive detection of magnetically-trapped atoms using frequency-synthesised light

    Full text link
    We present a technique for atomic density measurements by the off-resonant phase-shift induced on a two-frequency, coherently-synthesised light beam. We have used this scheme to measure the column density of a magnetically trapped atom cloud and to monitor oscillations of the cloud in real time by making over a hundred non-destructive local density measurments. For measurements using pulses of 10,000-100,000 photons lasting ~10 microsecond, the precision is limited by statistics of the photons and the photodiode avalanche. We explore the relationship between measurement precision and the unwanted loss of atoms from the trap and introduce a figure of merit that characterises it. This method can be used to probe the density of a BEC with minimal disturbance of its phase.Comment: Submitted to New Journal of Physic

    Collisional stability of a three-component degenerate Fermi gas

    Full text link
    We report on the creation of a degenerate Fermi gas consisting of a balanced mixture of atoms in three different hyperfine states of 6^6Li. This new system consists of three distinguishable Fermions with different and tunable interparticle scattering lengths a12a_{12}, a13a_{13} and a23a_{23}. We are able to prepare samples containing 5⋅1045 \cdot 10^4 atoms in each state at a temperature of about 215215 nK, which corresponds to T/TF≈0.37T/T_F \approx 0.37. We investigated the collisional stability of the gas for magnetic fields between 0 and 600 G and found a prominent loss feature at 130 G. From lifetime measurements we determined three-body loss coefficients, which vary over nearly three orders of magnitude

    Evaluation of interface quality in organ-cultured lamellar corneal transplants

    Get PDF
    Background: With increasing numbers of lamellar keratoplasties, eye banks are challenged to deliver precut lamellar donor tissue. In Europe, the most common technique of corneal storage is organ culture which requires a deswelling process before surgical processing. The aim of this study was to investigate the influence of different deswelling times on the cutting plane quality after microkeratome-assisted lamellar dissection. Methods: Eight paired donor corneas (16 specimens) not suitable for transplantation were organ cultured under standard conditions at the Eye Bank of the Ludwig-Maximilians Universität, Munich, Germany. Pairs of corneal buttons were analyzed during the deswelling process in dextrane-containing medium. While one cornea was cut at an early time point during the deswelling process and put back into deswelling medium thereafter, the partner cornea was completely deswollen and dissected after 72 hours. Specimens were then further processed for scanning electron microscopy. Surface quality was assessed both digitally using Scanning Probe Imaging Processing software, and manually by three blinded graders. Results: The corneal buttons processed at the beginning of the deswelling process had a smoother surface when compared to the partner cornea that was cut at the end of the deswelling process. In our setting, no relevant difference was detectable between manual and automated microkeratome dissection. Conclusion: For lamellar keratoplasty, organ-cultured corneas should be processed at an early stage during the deswelling process. We interpret the smoother dissection plane during early deswelling as a result of mechanical properties in a highly hydrated cornea

    A correspondence of modular forms and applications to values of L-series

    Get PDF
    An interpretation of the Rogers–Zudilin approach to the Boyd conjectures is established. This is based on a correspondence of modular forms which is of independent interest. We use the reinterpretation for two applications to values of L-series and values of their derivatives

    A single atom detector integrated on an atom chip: fabrication, characterization and application

    Full text link
    We describe a robust and reliable fluorescence detector for single atoms that is fully integrated into an atom chip. The detector allows spectrally and spatially selective detection of atoms, reaching a single atom detection efficiency of 66%. It consists of a tapered lensed single-mode fiber for precise delivery of excitation light and a multi-mode fiber to collect the fluorescence. The fibers are mounted in lithographically defined holding structures on the atom chip. Neutral 87Rb atoms propagating freely in a magnetic guide are detected and the noise of their fluorescence emission is analyzed. The variance of the photon distribution allows to determine the number of detected photons / atom and from there the atom detection efficiency. The second order intensity correlation function of the fluorescence shows near-perfect photon anti-bunching and signs of damped Rabi-oscillations. With simple improvements one can boost the detection efficiency to > 95%.Comment: 24 pages, 11 figure
    • …
    corecore