2,557 research outputs found

    An empirical initial-final mass relation from hot, massive white dwarfs in NGC 2168 (M35)

    Full text link
    The relation between the zero-age main sequence mass of a star and its white-dwarf remnant (the initial-final mass relation) is a powerful tool for exploration of mass loss processes during stellar evolution. We present an empirical derivation of the initial-final mass relation based on spectroscopic analysis of seven massive white dwarfs in NGC 2168 (M35). Using an internally consistent data set, we show that the resultant white dwarf mass increases monotonically with progenitor mass for masses greater than 4 solar masses, one of the first open clusters to show this trend. We also find two massive white dwarfs foreground to the cluster that are otherwise consistent with cluster membership. These white dwarfs can be explained as former cluster members moving steadily away from the cluster at speeds of <~0.5 km/s since their formation and may provide the first direct evidence of the loss of white dwarfs from open clusters. Based on these data alone, we constrain the upper mass limit of WD progenitors to be >=5.8 solar masses at the 90% confidence level for a cluster age of 150 Myr.Comment: 14 pages, 3 figures. Accepted for publication in the Astrophysical Journal Letters. Contains some acknowledgements not in accepted version (for space reasons), otherwise identical to accepted versio

    Probing The Lower Mass Limit For Supernova Progenitors And The High-Mass End Of The Initial-Final Mass Relation From White Dwarfs In The Open Cluster M35 (NGC 2168)

    Get PDF
    We present a photometric and spectroscopic study of the white dwarf (WD) population of the populous, intermediate-age open cluster M35 (NGC 2168); this study expands upon our previous study of the WDs in this cluster. We spectroscopically confirm 14 WDs in the field of the cluster: 12 DAs, 1 hot DQ, and 1 db star. For each DA, we determine the WD mass and cooling age, from which we derive each star's progenitor mass. These data are then added to the empirical initial-final mass relation (IFMR), where the M35 WDs contribute significantly to the high-mass end of the relation. The resulting points are consistent with previously published linear fits to the IFMR, modulo moderate systematics introduced by the uncertainty in the star cluster age. Based on this cluster alone, the observational lower limit on the maximum mass of WD progenitors is found to be similar to 5.1M(circle dot) - 5.2M(circle dot) at the 95% confidence level; including data from other young open clusters raises this limit to as high as 7.1M(circle dot), depending on the cluster membership of three massive WDs and the core composition of the most massive WDs. We find that the apparent distance modulus and extinction derived solely from the cluster WDs ((m-M)(V) = 10.45 +/- 0.08 and E(B-V) = 0.185 +/- 0.010, respectively) is fully consistent with that derived from main-sequence fitting techniques. Four M35 WDs may be massive enough to have oxygen - neon cores; the assumed core composition does not significantly affect the empirical IFMR. Finally, the two non-DA WDs in M35 are photometrically consistent with cluster membership; further analysis is required to determine their memberships.NSF AST-0397492, AST-0602288Astronom

    The White Dwarf Population in NGC 1039 (M34) and the White Dwarf Initial-Final Mass Relation

    Get PDF
    We present the first detailed photometric and spectroscopic study of the white dwarfs (WDs) in the field of the ~225 Myr old (log tau_cl = 8.35) open cluster NGC 1039 (M34) as part of the ongoing Lick-Arizona White Dwarf Survey. Using wide-field UBV imaging, we photometrically select 44 WD candidates in this field. We spectroscopically identify 19 of these objects as WDs; 17 are hydrogen-atmosphere DA WDs, one is a helium-atmosphere DB WD, and one is a cool DC WD that exhibits no detectable absorption lines. We find an effective temperature (T_eff) and surface gravity (log g) for each DA WD by fitting Balmer-line profiles from model atmospheres to the observed spectra. WD evolutionary models are then invoked to derive masses and cooling times for each DA WD. Of the 17 DAs, five are at the approximate distance modulus of the cluster. Another WD with a distance modulus 0.45 mag brighter than that of the cluster could be a double-degenerate binary cluster member, but is more likely to be a field WD. We place the five single cluster member WDs in the empirical initial-final mass relation and find that three of them lie very close to the previously derived linear relation; two have WD masses significantly below the relation. These outliers may have experienced some sort of enhanced mass loss or binary evolution; however, it is quite possible that these WDs are simply interlopers from the field WD population. Eight of the 17 DA WDs show significant CaII K absorption; comparison of the absorption strength with the WD distances suggests that the absorption is interstellar, though this cannot be confirmed with the current data.Comment: 24 pages, 13 figures. Accepted for publication in the Astronomical Journal. Figures 1, 2 and 3 reduced in resolutio

    XMM-Newton observations of EF Eridani: the textbook example of low-accretion rate polars

    Get PDF
    Archival X-ray observations of EF Eridani obtained in a low state revealed distinct X-ray detections at a luminosity L_X ~ 2 10^{29} erg/s, three orders of magnitude below its high state value. The plasma temperature was found to be as low as kT \loa 2 keV, a factor 10 below the high state. The X-ray/UV/IR spectral energy distribution suggests faint residual accretion rather than coronal emission as being responsible for the low-state X-ray emission. EF Eri thus showed a clear transition from being shock-dominated in the high state to be cyclotron-dominated in the low state. From the optical/UV spectral energy distribution we re-determine the photospheric temperature of the white dwarf to \~10000K. Contrary to earlier claims, WD model atmospheres produce sufficient UV flux to reproduce the published GALEX flux and orbital modulation.Comment: A&A, in pres

    Model atmosphere analysis of the extreme DQ white dwarf GSC2U J131147.2+292348

    Get PDF
    A new model atmosphere analysis for the peculiar DQ white dwarf discovered by Carollo et al. (2002) is presented. The effective temperature and carbon abundance have been estimated by fitting both the photometric data (UBJ,VRF,IN,JHK) and a low resolution spectrum (3500<lambda<7500 A) with a new model grid for helium-rich white dwarfs with traces of carbon (DQ stars). We estimate Teff ~ 5120 +/- 200 K and log[C/He] ~ -5.8 +/- 0.5, which make GSC2U J131147.2+292348 the coolest DQ star ever observed. This result indicates that the hypothetical transition from C2 to C2H molecules around Teff = 6000 K, which was inferred to explain the absence of DQ stars at lower temperatures, needs to be reconsidered.Comment: 4 pages, 2 figures, accepted for publication in Astronomy and Astrophysics Letter

    SDSS White Dwarf mass distribution at low effective temperatures

    Get PDF
    The DA white dwarfs in the Sloan Digital Sky Survey, as analyzed in the papers for Data Releases 1 and 4, show an increase in surface gravity towards lower effective temperatures below 11500 K. We study the various possible explanations of this effect, from a real increase of the masses to uncertainties or deficiencies of the atmospheric models. No definite answer is found but the tentative conclusion is that it is most likely the current description of convection in the framework of the mixing-length approximation, which leads to this effect.Comment: to appear in the proceedings of the 16th European Workshop on White Dwarfs, Barcelona, 200

    The astrophysical reaction 8Li(n,gamma)9Li from measurements by reverse kinematics

    Full text link
    We study the breakup of 9Li projectiles in high energy (28.5 MeV/u) collisions with heavy nuclear targets (208Pb). The wave functions are calculated using a single-particle model for 9Li, and a simple optical potential model for the scattering part. A good agreement with measured data is obtained with insignificant E2 contribution.Comment: 4 pages, 3 figure

    A Primer on Creative Financing for Families

    Get PDF
    • …
    corecore