250 research outputs found

    A resistance gene to Ustilago nuda in barley is located on chromosome 3H

    Get PDF
    Canadian Journal of Plant Pathology website: http://www.tandfonline.com/loi/tcjp20Loose smut of barley is a common disease which can be controlled using resistant varieties. Information on the chromosome location of loci controlling loose smut resistance and the development of molecular markers to aid in selection for these genes can be beneficial in the resistant variety development process. The objectives of this work were to determine the resistance or susceptibility of doubled haploid barley lines arising from a cross of the varieties ‘Steptoe’ and ‘Morex’ to Ustilago nuda, the causal agent of loose smut of barley, and map the chromosome location of the loose smut resistance locus in ‘Morex’. The reaction to Ustilago nuda of the doubled-haploid barley plants was determined by inoculating spikelets of each line at anthesis by injection of a teliospore suspension using a needle inoculation method. Mature seeds from the inoculated spikelets were grown to determine the percentage of plants that developed with smutted heads. The lines were classified as susceptible if greater than 10% of the plants were smutted. The loose smut resistance locus from the resistant source ‘Morex’ was mapped using an existing DNA marker map of the ‘Steptoe’/‘Morex’ population. The distribution of the resistant and susceptible progeny from the loose smut testing fit a single gene model. The resistance gene was mapped to chromosome 3 (3H)

    Identification and mapping of a leaf rust resistance gene in barley line Q21861

    Get PDF
    Barley line Q21861 possesses an incompletely dominant gene (RphQ) for resistance to leaf rust caused by Puccinia hordei. To investigate the allelic and linkage relations between RphQ and other known Rph genes, F2 populations from crosses between Q21861 and donors of Rph1 to Rph14 (except for Rph8) were evaluated for leaf rust reaction at the seedling stage. Results indicate that RphQ is either allelic with or closely linked to the Rph2 locus. A doubled haploid population derived from a cross between Q21861 and SM89010 (a leaf rust susceptible line) was used for molecular mapping of the resistance locus. Bulked segregant analysis was used to identify markers linked to RphQ, using random amplified polymorphic DNAs (RAPDs), restriction fragment length polymorphisms (RFLPs), and sequence tagged sites (STSs). Of 600 decamer primers screened, amplified fragments generated by 9 primers were found to be linked to the RphQ locus; however, only 4 of them were within 10 cM of the target. The RphQ locus was mapped to the centromeric region of chromosome 7, with a linkage distance of 3.5 cM from the RFLP marker CDO749. Rrn2, an RFLP clone from the ribosomal RNA intergenic spacer region, was found to be very closely linked with RphQ, based on bulked segregant analysis. An STS marker, ITS1, derived from Rrn2, was also closely linked (1.6 cM) to RphQ

    Identification of QTLs Associated with Fusarium Head Blight Resistance in Barley Accession CIho 4196

    Get PDF
    Fusarium head blight (FHB), incited by Fusarium graminearum Schwabe [teleomorph Gibberella zea (Schwein)], reduces quality of harvested barley (Hordeum vulgare L.) because of blighted kernels and the presence of deoxynivalenol (DON), a mycotoxin produced by the pathogen. CIho 4196, a two-rowed type, is one of the most resistant accessions known in barley; however, it possesses many undesirable agronomic traits. To better understand the genetics of reduced FHB severity and DON accumulation conferred by CIho 4196, a genetic map was generated using a population of recombinant inbred lines derived from a cross between Foster (a six-rowed malting cultivar) and CIho 4196. Quantitative trait loci (QTL) analyses were performed using data obtained from 10 field environments. The possible associations of resistance QTLs and various agronomic and morphological traits in barley also were investigated. The centromeric region of chromosome 2H flanked by the markers ABG461C and MWG882A (bins 6–10) likely (P\u3c0.001) contains two QTLs contributing to lower FHB severity and plant height, and one QTL each for DON accumulation, days to heading, and rachis node number. The QTL for low FHB severity in the bin 8 region explained from 3 to 9% of the variation, while the QTL in the bin 10 region explained from 17 to 60% of the variation. A QTL for DON accumulation that explained 9 to 14% of the variation was found in the bin 2 region of chromosome 4H. This may represent a new QTL not present in other FHB resistant sources. Resistance QTLs in the bin 8 region and bin 10 region of chromosome 2HL were provisionally designated Qrgz-2H-8 and Qrgz-2H-10, respectively. The QTL for DON accumulation in chromosome 4H was provisionally named QDON-4H-2

    The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases

    Get PDF
    Stem rust caused by Puccinia graminis f. sp. tritici was among the most devastating diseases of barley in the northern Great Plains of the U.S. and Canada before the deployment of the stem rust-resistance gene Rpg1 in 1942. Since then, Rpg1 has provided durable protection against stem rust losses in widely grown barley cultivars (cvs.). Extensive efforts to clone Rpg1 by synteny with rice provided excellent flanking markers but failed to yield the gene because it does not seem to exist in rice. Here we report the map-based cloning and characterization of Rpg1. A high-resolution genetic map constructed with 8,518 gametes and a 330-kb bacterial artificial chromosome contig physical map positioned the gene between two crossovers ≈0.21 centimorgan and 110 kb apart. The region including Rpg1 was searched for potential candidate genes by sequencing low-copy probes. Two receptor kinase-like genes were identified. The candidate gene alleles were sequenced from resistant and susceptible cvs. Only one of the candidate genes showed a pattern of apparently functional gene structure in the resistant cvs. and defective gene structure in the susceptible cvs. identifying it as the Rpg1 gene. Rpg1 encodes a receptor kinase-like protein with two tandem protein kinase domains, a novel structure for a plant disease-resistance gene. Thus, it may represent a new class of plant resistance genes

    Rice-barley synteny and its applications to saturation mapping of the barley Rpg1 region

    Get PDF
    In order to facilitate the map-based cloning of the barley stem rust resistance gene Rpg1, we have demonstrated a high degree of synteny at a micro level between the telomeric region of barley chromosome 1P and rice chromosome 6. We have also developed and applied a simple and efficient method for selecting useful probes from large insert genomic YAC and cosmid clones. The gene order within the most terminal 6.5 cM of barley chromosome 1P was compared with the most terminal 2.7 cM of rice chromosome 6. Nine rice probes, previously mapped in rice or isolated from YAC or cosmid clones from this region, were mapped in barley. All, except one, were in synteny with the rice gene order. The exception, probe Y617R, was duplicated in barley. One copy was located on a different chromosome and the other in a non-syntenic position on barley chromosome 1P. The barley probes from this region could not be mapped to rice, but two of them were inferred to be in a syntenic location based on their position on a rice YAC. This work demonstrates the utility of applying the results of genetic and physical mapping of the small genome cereal rice to map-based cloning of interesting genes from large genome relatives

    Linkage map construction involving a reciprocal translocation

    Get PDF
    This paper is concerned with a novel statistical–genetic approach for the construction of linkage maps in populations obtained from reciprocal translocation heterozygotes of barley (Hordeum vulgare L.). Using standard linkage analysis, translocations usually lead to ‘pseudo-linkage’: the mixing up of markers from the chromosomes involved in the translocation into a single linkage group. Close to the translocation breakpoints recombination is severely suppressed and, as a consequence, ordering markers in those regions is not feasible. The novel strategy presented in this paper is based on (1) disentangling the “pseudo-linkage” using principal coordinate analysis, (2) separating individuals into translocated types and normal types and (3) separating markers into those close to and those more distant from the translocation breakpoints. The methods make use of a consensus map of the species involved. The final product consists of integrated linkage maps of the distal parts of the chromosomes involved in the translocation

    454 sequencing of pooled BAC clones on chromosome 3H of barley

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome sequencing of barley has been delayed due to its large genome size (ca. 5,000Mbp). Among the fast sequencing systems, 454 liquid phase pyrosequencing provides the longest reads and is the most promising method for BAC clones. Here we report the results of pooled sequencing of BAC clones selected with ESTs genetically mapped to chromosome 3H.</p> <p>Results</p> <p>We sequenced pooled barley BAC clones using a 454 parallel genome sequencer. A PCR screening system based on primer sets derived from genetically mapped ESTs on chromosome 3H was used for clone selection in a BAC library developed from cultivar "Haruna Nijo". The DNA samples of 10 or 20 BAC clones were pooled and used for shotgun library development. The homology between contig sequences generated in each pooled library and mapped EST sequences was studied. The number of contigs assigned on chromosome 3H was 372. Their lengths ranged from 1,230 bp to 58,322 bp with an average 14,891 bp. Of these contigs, 240 showed homology and colinearity with the genome sequence of rice chromosome 1. A contig annotation browser supplemented with query search by unique sequence or genetic map position was developed. The identified contigs can be annotated with barley cDNAs and reference sequences on the browser. Homology analysis of these contigs with rice genes indicated that 1,239 rice genes can be assigned to barley contigs by the simple comparison of sequence lengths in both species. Of these genes, 492 are assigned to rice chromosome 1.</p> <p>Conclusions</p> <p>We demonstrate the efficiency of sequencing gene rich regions from barley chromosome 3H, with special reference to syntenic relationships with rice chromosome 1.</p
    corecore