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ABSTRACT

In order to facilitate the map-based cloning of the barley
stem rust resistance gene Rpg1, we have demonstrated
a high degree of synteny at a micro level between the
telomeric regions of barley chromosome 1P and rice
chromosome 6. We have also developed and applied a
simple and efficient method for selecting useful probes
from large insert genomic YAC and cosmid clones. The
gene order within the most terminal 6.5 cM of barley
chromosome 1P was compared with the most terminal
2.7 cM of rice chromosome 6. Nine rice probes,
previously mapped in rice or isolated from YAC or
cosmid clones from this region, were mapped in barley.
All, except one, were in synteny with the rice gene order.
The exception, probe Y617R, was duplicated in barley.
One copy was located on a different chromosome and
the other in a non-syntenic position on barley chromo-
some 1P. The barley probes from this region could not
be mapped to rice, but two of them were inferred to be
in a syntenic location based on their position on a rice
YAC. This work demonstrates the utility of applying the
results of genetic and physical mapping of the small
genome cereal rice to map-based cloning of interesting
genes from large genome relatives.

INTRODUCTION

Comparative genome mapping provides insights into the modes
and dynamics of genome evolution. Although the conservation of
genetic linkages during the course of evolution was described
many years ago (1), the concept of genome synteny has been
developing along with the molecular marker systems used in
chromosome mapping. Restriction fragment length polymorphism
(RFLP), the first class of genetic markers based on DNA sequence
polymorphism, has proven invaluable in mapping human and other
genomes. RFLP mapping, together with molecular cloning of
rapidly increasing number of genes, set the stage for establishing
syntenic relationships for a number of animal and plant species
2-4).

The levels of synteny vary greatly, depending mostly on
evolutionary distances between the compared taxa. In plants, very
good marker order conservation was observed between the closely
related tomato and potato species (4,5) and among the members of
the Triticeae tribe (6). The conservation of gene order is lower
when more distantly related species are compared, even within the
same family (7) or tribe (8,9). Genetic distances between markers
were often similar for the species compared (10).

The comparisons reported to date involved markers distributed
throughout the genome often with large genetic distances between
them. This allowed detection of gross synteny or major rearrange-
ments of chromosomes. Gross synteny between rice and two other
cereals, maize (10) and wheat (11,12) has been reported. The high
degree of synteny between barley and wheat (6) suggests that the
synteny observed for rice-wheat is also relevant to rice-barley.

In order to apply the synteny relationships between the small
genome cereal rice and large genome cereals such as barley for
map-based cloning of genes, the conservation of gene order at
sub-centiMorgan and sub-Mbase level needs to be established.

Our long-term goal is the molecular characterization of the
telomeric region of barley chromosome 1P (S) and map-based
cloning of the Rpgl gene located in this region. The Rpgl locus
confers durable resistance to the stem rust pathogen Puccinia
graminis £. sp. tritici (13). Extensive RFLP mapping in two barley
crosses covered the most terminal 5 ¢cM of chromosome 1P with
a number of molecular markers (14). A very close distal marker
(ABG704; 0.3 cM) was identified, but the closest proximal marker
was still 1.5 ¢cM from the target. One of our approaches to saturate
this region with molecular markers is based on synteny with the
small genome cereal rice.

The most comprehensive rice genetic map is 1575 cM
distributed over 12 linkage groups (15). The rice haploid genome
size is ~400 Mb (16), yielding an average of ~250 kb/cM. By
comparison, the most comprehensive barley genetic map is 1245
cM (17) distributed over seven linkage groups. The barley haploid
genome size is ~4900 Mb (16), yielding an average of ~4 Mb/cM.
These comparisons clearly indicate the advantages of using the
rice genome as a tool for map-based cloning of genes from barley
and other large genome cereals as has been previously discussed
(12). At least two criteria must be met to make this approach
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feasible. First, the synteny must hold over small genetic and
physical distances and secondly, an efficient method for selecting
probes from large insert clones that cross-hybridize between the
two genomes must be developed. Here we report results that
demonstrate the achievement of both criteria.

MATERIALS AND METHODS
Plant material

Four barley crosses, segregating for the Rpg!/ gene, used in this
study were Steptoe X Morex (18, Devaux, unpublished), Harring-
ton X TR306 (19), Harrington X Morex (unpublished) and
SM89010x Q21861 (20). Morex, TR306 and Q21861 are resistant
to the stem rust pathogen P.graminis f. sp. tritici race MCC (Rpg1),
while Steptoe, Harrington and SM89010 are susceptible (rpgl). A
total of 1100 doubled haploid (DH) lines, derived by Hordeum
bulbosum (21) or by anther culture (22) methods, were used as
segregating populations. The use of ‘immortal’ DH lines is
advantageous since they permit repeated testing of the disease
phenotype, thus insuring the high degree of accuracy essential for
fine structure mapping. Markers mapped within 2 cM of Rpgl
locus in one or more populations were also mapped with all 26 DH
lines that have been identified as recombinants in the Plc to
ABGO077 region. An F2 population of 186 individuals derived from
a cross of cultivars Nipponbare x Kasalath (15) was used for

mapping in rice.
RFLP techniques and linkage maps

All RFLP techniques and linkage map construction were as
previously described for barley (18) and rice (15). For hybridiza-
tion of heterologous probes the stringency conditions were reduced
to 62°C and 1 x SSC.

Large insert clones

Rice YAC library preparation and characterization has been
reported (23). The rice cv. Nipponbare cosmid library was
prepared in SuperCosl (Stratagene) vector (Katayose, unpub-
lished). DNA was isolated from yeast transformants carrying rice
YAC clones as previously described (24,25). Cosmid DNA was
isolated using the alkaline precipitation method (26). High
molecular weight DNA from YAC clones was resolved by pulsed
field gel electrophoresis (PFGE) using CHEF DR III system
(BIO-RAD) and conditions recommended by the manufacturer.
DNA from PFGE gels was depurinated by 20 min incubation in
025 N HCI prior to transfer to positively charged nylon
membranes (DuPont or Boehringer Mannheim). Transfer, hybrid-
ization, washing and detection were as for RFLP techniques.

Preparation of plasmid libraries

General molecular techniques were as described (26). DNA from
the rice YAC clone Y617 was resolved using PFGE as described
above. The ~490 kb YAC was excised from 1% agarose gel and
electrophoretically transfered to LMT agarose. After agarase (New
England Biolabs) digestion, the DNA was precipitated with
ethanol, partly digested with Mbol and cloned into a BamHI
digested Bluescript SK+ vector. A portion of the ligation reaction
was used to transform Escherichia coli DH5«. strain. Insert-con-
taining clones were identified using blue/white selection.

DNA from cosmid Y617R10-1 (5 pug) was partly digested with
Tagl and Rsal. The restriction digest was separated in 1% LMT
agarose and a 1-3 kb section of the gel excised. After agarase
digestion and precipitation, restriction fragment ends were filled in
using Taq polymerase (2.5 U) and dNTPs (0.2 mM) in a 50 pl
reaction at 70°C for 20 min. The reaction was stopped by
chlorophorm extraction, ethanol precipitated and ligated into
linearized Bluescript SK+ containing 3” dT overhangs (27).
Transformation was as described for YAC subcloning.

Selection of subclones crosshybridizing to barley

Restriction digests of subcloned DNA were transferred to mem-
branes and hybridized with 32P labelled cDNA synthesized from
a mixture of barley mRNA. The barley mRNA was isolated from
immature embryo, immature inflorescence and Morex leaf tissues.
Leaf tissue was from 3-week-old seedlings that had been
inoculated with the P.graminis f. sp. tritici pathogen for 16 h prior
to harvest and non-inoculated controls. Labelling was with AMV
Reverse Transcriptase (Promega) using the conditions recom-
mended by the manufacturer for first strand cDNA synthesis,
modified by substituting random hexamers (Amersham) for
oligodT and [a:-32P}dCTP (3000 Ci/mmol, New England Nuclear)
for dCTP. Hybridization, washing and detection conditions were as
described above. Positive clones were used for RFLP.

RESULTS

Linkage analysis

The plastocyanin precursor (Plc) locus co-segregates with the
telomeric markers ABA301 and ABG312 and represents the most
telomeric marker on barley chromosome 1P in the Steptoe X
Morex map (17,18). The wheat marker W 160, homologous to the
barley plastocyanin probe (data not presented), maps to the most
telomeric position of rice chromosome 6 (15). The Wx (Gix;
ADP-glucose starch glycosyltransferase) locus maps 7.3 and 19.7
cM proximal to W 160 (Plc) inrice and barley, respectively. These
markers confirm the general synteny of the rice chromosome 6
and barley 1P chromosome telomeric regions and include our
target, the barley stem rust resistance gene Rpg!. In order to
determine gene microsynteny between rice and barley, we
examined the barley and rice probes mapped in the barley Plc to
MWGS555A (5.1 cM) and rice W160 to C474 (2.7 cM) regions.
The rice probes C474 and R560 were mapped in barley and
confirmed the marker order conservation for this region (Fig. 1).
The rice probes C1003B, Y4621L and R2869 did not hybridize
well enough to be mapped in barley. It was not possible to map
any of the barley probes in rice, although two of them (ABG077
and MWGO036B) showed a weak hybridization signal to rice
genomic DNA. Hybridization of these two probes to the YAC
clones showed that they are located on the Y617 region that is not
overlapped by Y4621 and in a syntentic position with barley (Fig.
1, Table 1).

Analysis of rice YAC clones

The overlapping YAC clones Y617 and Y4621 (23 and Kurata,
unpublished), covering most of the distal region of rice chromo-
some 6, were chosen for analysis. The Y617 end clone Y617R
co-segregates with W160 in the rice map, but Y617 and Y4621
failed to hybridize with Plc (W160) probe indicating that they did
not extend to this region. Two additional YACs, Y3219 and
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Figure 1. Synteny between barley chromosome 1P and rice chromosome 6 telomeric regions. Genetic distances from Plc (W160 in rice) to Wx are 19.7 cM for barley
and 7.3 cM for rice, respectively. The Wx marker on both genetic maps is toward the centromere. Bars denoting 1 cM for each species are shown. Dashed lines (---)
from markers crossing/connecting to symbols denoting YACs indicate a positive signal obtained for the YAC clone with that marker. The exact location of most of
the markers on the YAC is not known except for YAC end clones Y4621L and Y617R. Arrows at the ends of a YAC indicate terminus not determined. Bold face markers
on the barley map represent subclones of Y617 and italicized markers from the cosmid Y617R10-1. Most markers presented on the barley map were scored using
a population of 1100 gametes with the following exceptions: Plc, MWG555A, MWGO036B, pM6 and Wx (401 gametes); pM13 and Y617R (350 gametes); C474 and
R560 (150 gametes). The rice map was constructed using 372 gametes from a cross of the cultivars Nipponbare x Kasalath. Linkage analyses were made as described

in Materials and Methods.

Y3192, identified later, do hybridize with Plc (W160) and thus
cover the Rpgl target region (Table 1).

Generating probes from Y617

In order to generate probes for further microsynteny testing and
tight linkage to the target gene Rpgl, we subcloned Y617 rice DNA
into a plasmid vector. Of the ~60 subclones tested, 14 hybridized
with a barley cDNA probe. These were tested for polymorphism
with DNA from the barley cultivars used in the crosses being
analyzed, cut with six restriction enzymes and rice DNA as a
control. Many probes hybridized with a single fragment in rice and
two or more fragments in barley. Two clones showed the opposite
trend hybridizing with a few fragments in barley and several
fragments or a smear in rice.

The level of polymorphism detected in barley was low. Only two
probes, pM6 and pM13, could be mapped in barley and only one

of these, pM13, was mapped in rice (Fig. 1). The pM13 probe
provided further confirmation of the conservation of gene order
between rice and barley in this region. More importantly, pM13
was only 0.3 cM proximal to Rpg! in barley and 0.3 cM proximal
to the co-segregating markers W160, C1003B and Y617R in rice
(Fig. 1). These data suggest that the rice genome region
corresponding to the barley Rpg! region should be very close to the
terminus of Y617, i.e. the Y617R locus.

Analysis of Y617R

The Y617R probe is a single copy sequence in rice, but it detected
two fragments in the barley genome. Both fragments were
polymorphic and mapped. One copy mapped to chromosome 3M,
between ABG389 and ABC161 on the barley SM map (17) and the
other one co-segregated with MWGS555A (Fig. 1). The
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MWGS55A location is 3.7 ¢cM proximal to pM13 and out of
synteny with the rice map.

Table 1. Presence or absence of probe sequences on four YAC clones
covering the rice chromosome 6 telomeric region

Probe Rice YAC clones

Y3219 Y617 Y4621

W160
C1003B
cl10-10
c10-14
c10-49

+ - NT
+
+
+
+
10-63 +
+
+
+
+

Y617R

pM13

ABGO077
MWG036B

pMo6 NT
C474 NT
R560 NT

332++++++++++
=

+ o+ o+ o+

| |

+ o+ o+
+

NT = not tested.

In order to generate more closely linked probes and to address the
issue of non-syntenic location of the Y617R sequence, the Y617R
probe was used to screen the rice cultivar Nipponbare cosmid
library. Four positive clones were isolated covering ~50 kb. Neither
Plc (W160) nor pM13 sequences were found to be associated with
these clones, providing a minimal distance of 50 kb separating
these loci.

The cosmid Y617Rcos10-1 was subcloned into a plasmid vector
as previously described for Y617. Over 120 clones were generated
with an average insert size of 1.5 kb. Labelled first strand cDNA
was used to identify probes cross-hybridizing with barley. Positive
probes were tested for polymorphism with the barley parent
cultivar DNA. Four probes (c10-10, c10-14, c10-49 and c10-63)
were identified as very polymorphic among the parents being used
in this study. These probes identified from one to several bands in
barley and rice. Interestingly, c10-49 and c10-63 generated a
pattern of bands that was identical among the genotypes resistant
to stem rust (Rpgl), but different among the susceptible (rpgl)
ones. All four probes detected loci that co-segregated with
ABG704 and mapped just 0.3 cM (three crossovers in a population
of 1100 gametes) from the target region (Fig. 1). These data
indicate that only a small fragment around Y617R has moved to
the new location and most of the barley sequences are in synteny
with the rice marker order.

DISCUSSION

Data presented here demonstrate a very high degree of synteny at the
sub-cM level between barley chromosome 1P and rice chromosome
6 telomeric regions. Both species have similar marker order and
orientation with respect to the telomere. Genetic distances were only
slightly different. One marker, Y617R, was found to be an exception
to this general rule. This sequence was duplicated in barley and one

copy had moved to a different chromosome while the other one had
relocated to a more proximal position within barley chromosome
1P. Sequencing of Y617R clone (data not presented) did not reveal
any obvious features that could account for this mobility. Detailed
analysis showed that the out-of-synteny region is probably small,
although its exact borders remain to be determined. The telomeric
location of the region we have analyzed may contribute to the
rearrangement of Y617R sequences. The highly recombinogenic
nature of telomeres and tendency toward amplification/deletion
processes is well established in yeast (28—30) and malaria parasites
(31). A high degree of recombination between satelite-like
telomeric repeats was found in numerous species (reviewed in 32)
pointing to non-homologous recombination as an important
mechanism for genome evolution at sub-terminal regions of
chromosomes (33).

Another important aspect of our work is the demonstration that
subclones representing expressed genes mapping to the target
region can be easily obtained from large insert genomic clones. We
reasoned that expressed sequences would provide the best source
of probes between two distantly related species. Generating small
insert plasmid libraries from YACs or cosmids and probing with
barley cDNA resulted in selection of rice probes that hybridized
strongly to barley genomic DNA. Probes that were polymorphic
mapped to the region covered by the large insert clone. Several
methods have been previously described for selection of expressed
sequences carried by large insert genomic clones (reviewed in 34).
Exon trapping (35) does not directly rely on the availability of
representative cDNA libraries. However, the size of the genomic
insert suitable for this method limits its feasibility. In contrast,
cDNA enrichment methods (34,36,37) can be applied to YACs or
even YAC contigs. The enrichment scheme utilizing biotin—strep-
tavidin magnetic bead technology (34) seems particularly power-
ful. Although the use of magnetic beads offers several
thousand-fold enrichment for cDNAs from YAC clones (or cosmid
contigs) its effectiveness is determined by the representativeness of
the cDNA library used (34). The representation of cDNA
sub-libraries created by this method may also be affected by the
PCR process, especially with several rounds of enrichment. The
procedure we have described here is simple, rapid and did not
generate any false positives in the sample tested. It may be a
method of choice, particularly when access to cDNA libraries from
a large variety of tissues is limited.

The clone Y617 covers the rice map from Y617R to C474, a
distance of 2.7 cM. The physical distance per cM for this region of
the rice genome is ~180 kb, based on the Y617 size of 490 kb. This
agrees well with the average distance of 250 kb/cM and range of
120-1000 kb/cM previously reported (23). The co-segregating
markers W160 and Y617R, are, however, = 50 kb apart. Since the
rice map is constructed based on 186 F2 plants or 372 chromo-
somes, co-segregation suggests a genetic distance of <0.3 cM on
average. Based on the above calculations, 0.3 cM would be ~60 kb.

Since Y617R is out of synteny with rice it cannot be used for the
barley comparison. However, the barley genetic distance from
pM13 to C474 is 3.7 cM. The comparable distance in rice is 2.4
cM. Unfortunately, we do not have data about the physical distance
spanned by these markers in barley, therfore we cannot compare
the amount of DNA ‘between genes’ in barley versus the amount
between their homologs in rice. Based on the overall barley
genome size and linkage map, an average value of 4 Mb/cM can
be calculated. Even if this is a gross overestimate, the value of using
rice to identify and map expressed sequences for the purpose of



map-based cloning of genes from barley, or any large genome
cereal species, is clearly apparent.

In conclusion, we want to stress that the barley 1P and rice
chromosome 6 telomeric region showed very good synteny. This,
together with the ability to efficiently select markers suitable for
mapping and tightly linked to the target region, should provide
encouragement for the use of rice as a resource species for
positional cloning of important genes from large genome cereals.
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