313 research outputs found

    Endogenous, cholesterol-activated ATP-dependent transport in membrane vesicles from Spodoptera frugiperda cells

    Get PDF
    Transport proteins of the ATP-binding cassette (ABC) family are found in all kingdoms of life. In humans, several ABC efflux transporters play a role in drug disposition and excretion. Therefore, in vitro methods have been developed to characterize the substrate and inhibitor properties of drugs with respect to these transporters. In the vesicular transport assay, transport is studied using inverted membrane vesicles produced from transporter overexpressing cell lines of both mammalian and insect origin. Insect cell expression systems benefit from a higher expression compared to background, but are not as well characterized as their mammalian counterparts regarding endogenous transport. Therefore, the contribution of this transport in the assay might be underappreciated. In this study, endogenous transport in membrane vesicles from Spodoptera frugiperda -derived Sf9 cells was characterized using four typical substrates of human ABC transporters: 5(6)-carboxy-2,â€Č7â€Č-dichlorofluorescein (CDCF), estradiol-17ÎČ-glucuronide, estrone sulfate and N-methyl-quinidine. Significant ATP-dependent transport was observed for three of the substrates with cholesterol-loading of the vesicles, which is sometimes used to improve the activity of human transporters expressed in Sf9 cells. The highest effect of cholesterol was on CDCF transport, and this transport in the cholesterol-loaded Sf9 vesicles was time and concentration dependent with a Km of 8.06 ± 1.11â€ŻÎŒM. The observed CDCF transport was inhibited by known inhibitors of human ABCC transporters, but not by ABCB1 and ABCG2 inhibitors verapamil and Ko143, respectively. Two candidate genes for ABCC-type transporters in the S. frugiperda genome (SfABCC2 and SfABCC3) were identified based on sequence analysis as a hypothesis to explain the observed endogenous ABCC-type transport in Sf9 vesicles. Although further studies are needed to verify the role of SfABCC2 and SfABCC3 in Sf9 vesicles, the findings of this study highlight the need to carefully characterize background transport in Sf9 derived membrane vesicles to avoid false positive substrate findings for human ABC transporters studied with this overexpression system.Transport proteins of the ATP-binding cassette (ABC) family are found in all kingdoms of life. In humans, several ABC efflux transporters play a role in drug disposition and excretion. Therefore, in vitro methods have been developed to characterize the substrate and inhibitor properties of drugs with respect to these transporters. In the vesicular transport assay, transport is studied using inverted membrane vesicles produced from transporter overexpressing cell lines of both mammalian and insect origin. Insect cell expression systems benefit from a higher expression compared to background, but are not as well characterized as their mammalian counterparts regarding endogenous transport. Therefore, the contribution of this transport in the assay might be underappreciated. In this study, endogenous transport in membrane vesicles from Spodoptera frugiperda-derived Sf9 cells was characterized using four typical substrates of human ABC transporters: 5(6)-carboxy-2,' 7'-dichlorofluorescein (CDCF), estradiol-17 beta-glucuronide, estrone sulfate and N-methyl-quinidine. Significant ATP-dependent transport was observed for three of the substrates with cholesterol-loading of the vesicles, which is sometimes used to improve the activity of human transporters expressed in Sf9 cells. The highest effect of cholesterol was on CDCF transport, and this transport in the cholesterol-loaded Sf9 vesicles was time and concentration dependent with a Km of 8.06 +/- 1.11 mu M. The observed CDCF transport was inhibited by known inhibitors of human ABCC transporters, but not by ABCB1 and ABCG2 inhibitors verapamil and Ko143, respectively. Two candidate genes for ABCC-type transporters in the S. frugiperda genome (SfABCC2 and SfABCC3) were identified based on sequence analysis as a hypothesis to explain the observed endogenous ABCC-type transport in Sf9 vesicles. Although further studies are needed to verify the role of SfABCC2 and SfABCC3 in Sf9 vesicles, the findings of this study highlight the need to carefully characterize background transport in Sf9 derived membrane vesicles to avoid false positive substrate findings for human ABC transporters studied with this overexpression system.Peer reviewe

    Augmented Reality Technician Assistance Program

    Get PDF
    The Augmented Reality Technician Assistance Program is a proof-of-concept project for allowing a remote expert to communicate with and assist a field technician in completing procedures with which the technician may be unfamiliar. For example, an expert in Navy aircraft maintenance could advise an Air Force flight mechanic about performing repairs or maintenance on Navy aircraft. The end goal of our Cedarville computer science capstone project is to create an experimental prototype to deliver to the Air Force Research Laboratory. In our prototype the expert uses a Microsoft Surface Pro tablet to communicate via marked up still images with a Hololens-enabled field technician. As a wearable computer, the Hololens provides the technician a hands-free advantage over traditional devices, because it’s interface does not use typical input devices such as a mouse and keyboard. The advantage of the Surface Pro is that it allows the expert to mark up instructional images naturally with the stylus, providing better precision for the annotations

    Developing a Mobile Application‐Based Particle Image Velocimetry Tool for Enhanced Teaching and Learning in Fluid Mechanics: A Design‐Based Research Approach

    Get PDF
    A robust and intuitive understanding of fluid mechanics—the applied science of fluid motion—is foundational within many engineering disciplines, including aerospace, chemical, civil, mechanical, naval, and ocean engineering. In‐depth knowledge of fluid mechanics is critical to safe and economical design of engineering applications employed globally everyday, such as automobiles, aircraft, and sea craft, and to meeting global 21st century engineering challenges, such as developing renewable energy sources, providing access to clean water, managing the environmental nitrogen cycle, and improving urban infrastructure. Despite the fundamental nature of fluid mechanics within the broader undergraduate engineering curriculum, students often characterize courses in fluid mechanics as mathematically onerous, conceptually difficult, and aesthetically uninteresting; anecdotally, undergraduates may choose to opt‐out of fluids engineering‐related careers based on their early experiences in fluids courses. Therefore, the continued development of new frameworks for engineering instruction in fluid mechanics is needed. Toward that end, this paper introduces mobile instructional particle image velocimetry (mI‐PIV), a low‐cost, open‐source, mobile application‐based educational tool under development for smartphones and tablets running Android. The mobile application provides learners with both technological capability and guided instruction that enables them to visualize and experiment with authentic flow fields in real time. The mI‐PIV tool is designed to generate interest in and intuition about fluid flow and to improve understanding of mathematical concepts as they relate to fluid mechanics by providing opportunities for fluids‐related active engagement and discovery in both formal and informal learning contexts

    Fermi surface induced lattice distortion in NbTe2_2

    Full text link
    The origin of the monoclinic distortion and domain formation in the quasi two-dimensional layer compound NbTe2_2 is investigated. Angle-resolved photoemission shows that the Fermi surface is pseudogapped over large portions of the Brillouin zone. Ab initio calculation of the electron and phonon bandstructure as well as the static RPA susceptibility lead us to conclude that Fermi surface nesting and electron-phonon coupling play a key role in the lowering of the crystal symmetry and in the formation of the charge density wave phase

    Methodological framework for an integrated multi-scale vulnerability and resilience assessment

    Get PDF
    The deliverable illustrates the methodological framework to assess vulnerability and resilience across different temporal and spatial scales, acknowledging the different domains where the latter may manifest, and in particular in the natural and the built environment, allocating a large importance to the so called “critical infrastructures”, in social and economic systems. A set of four matrices has been developed to identify what aspects should be looked at before the impact, that is to say what shows the potential ability or inability to cope with an extreme; at the impact, addressing in particular the capacity (or incapacity) to sustain various types of stresses (in the form of acceleration, pressure, heat
); in the time immediately after the impact, as the ability (or inability) to suffer losses and still continue functioning; and in the longer term of recovery, as the capacity to find a new state of equilibrium in which the fragilities manifested during and after the impact are addressed. Developing the framework, a particular attention has been paid to the relationships among systems within the same matrix and among matrices, across spatial and temporal scales. A set of matrices has been developed for different natural hazards, including in particular landslides and floods, trying to include as much as possible what past cases, the international literature and prior experience of involved partners have indicated as relevant parameters and factors to look at. In this regard, the project builds on the state of the art, embedding what has been learned until now in terms of response capacity to a variety of stresses and in the meantime identifying gaps to be addressed by future research

    Avidin related protein 2 shows unique structural and functional features among the avidin protein family

    Get PDF
    BACKGROUND: The chicken avidin gene family consists of avidin and several avidin related genes (AVRs). Of these gene products, avidin is the best characterized and is known for its extremely high affinity for D-biotin, a property that is utilized in numerous modern life science applications. Recently, the AVR genes have been expressed as recombinant proteins, which have shown different biotin-binding properties as compared to avidin. RESULTS: In the present study, we have employed multiple biochemical methods to better understand the structure-function relationship of AVR proteins focusing on AVR2. Firstly, we have solved the high-resolution crystal structure of AVR2 in complex with a bound ligand, D-biotin. The AVR2 structure reveals an overall fold similar to the previously determined structures of avidin and AVR4. Major differences are seen, especially at the 1–3 subunit interface, which is stabilized mainly by polar interactions in the case of AVR2 but by hydrophobic interactions in the case of AVR4 and avidin, and in the vicinity of the biotin binding pocket. Secondly, mutagenesis, competitive dissociation analysis and differential scanning calorimetry were used to compare and study the biotin-binding properties as well as the thermal stability of AVRs and avidin. These analyses pinpointed the importance of residue 109 for biotin binding and stability of AVRs. The I109K mutation increased the biotin-binding affinity of AVR2, whereas the K109I mutation decreased the biotin-binding affinity of AVR4. Furthermore, the thermal stability of AVR2(I109K) increased in comparison to the wild-type protein and the K109I mutation led to a decrease in the thermal stability of AVR4. CONCLUSION: Altogether, this study broadens our understanding of the structural features determining the ligand-binding affinities and stability as well as the molecular evolution within the protein family. This novel information can be applied to further develop and improve the tools already widely used in avidin-biotin technology

    Animal or Plant: Which Is the Better Fog Water Collector?

    Get PDF
    Occasional fog is a critical water source utilised by plants and animals in the Namib Desert. Fog basking beetles (Onymacris unguicularis, Tenebrionidae) and Namib dune bushman grass (Stipagrostris sabulicola, Poaceae) collect water directly from the fog. While the beetles position themselves optimally for fog water collection on dune ridges, the grass occurs predominantly at the dune base where less fog water is available. Differences in the fog-water collecting abilities in animals and plants have never been addressed. Here we place beetles and grass side-by-side in a fog chamber and measure the amount of water they collect over time. Based on the accumulated amount of water over a two hour period, grass is the better fog collector. However, in contrast to the episodic cascading water run-off from the grass, the beetles obtain water in a steady flow from their elytra. This steady trickle from the beetles' elytra to their mouth could ensure that even short periods of fog basking – while exposed to predators – will yield water. Up to now there is no indication of specialised surface properties on the grass leafs, but the steady run-off from the beetles could point to specific property adaptations of their elytra surface
    • 

    corecore