491 research outputs found
Theoretical vs. empirical classification and prediction of congested traffic states
Starting from the instability diagram of a traffic flow model, we derive conditions for the occurrence of congested traffic states, their appearance, their spreading in space and time, and the related increase in travel times. We discuss the terminology of traffic phases and give empirical evidence for the existence of a phase diagram of traffic states. In contrast to previously presented phase diagrams, it is shown that "widening synchronized patterns” are possible, if the maximum flow is located inside of a metastable density regime. Moreover, for various kinds of traffic models with different instability diagrams it is discussed, how the related phase diagrams are expected to approximately look like. Apart from this, it is pointed out that combinations of on- and off-ramps create different patterns than a single, isolated on-ram
Simulation studies of permeation through two-dimensional ideal polymer networks
We study the diffusion process through an ideal polymer network, using
numerical methods. Polymers are modeled by random walks on the bonds of a
two-dimensional square lattice. Molecules occupy the lattice cells and may jump
to the nearest-neighbor cells, with probability determined by the occupation of
the bond separating the two cells. Subjected to a concentration gradient across
the system, a constant average current flows in the steady state. Its behavior
appears to be a non-trivial function of polymer length, mass density and
temperature, for which we offer qualitative explanations.Comment: 8 pages, 4 figure
Gas permeation through a polymer network
We study the diffusion of gas molecules through a two-dimensional network of
polymers with the help of Monte Carlo simulations. The polymers are modeled as
non-interacting random walks on the bonds of a two-dimensional square lattice,
while the gas particles occupy the lattice cells. When a particle attempts to
jump to a nearest-neighbor empty cell, it has to overcome an energy barrier
which is determined by the number of polymer segments on the bond separating
the two cells. We investigate the gas current as a function of the mean
segment density , the polymer length and the probability
for hopping across segments. Whereas decreases monotonically with
for fixed , its behavior for fixed and increasing
depends strongly on . For small, non-zero , appears to increase
slowly with . In contrast, for , it is dominated by the underlying
percolation problem and can be non-monotonic. We provide heuristic arguments to
put these interesting phenomena into context.Comment: Dedicated to Lothar Schaefer on the occasion of his 60th birthday. 11
pages, 3 figure
Topological doping of repulsive Hubbard models
The spin configuration induced by single holes and hole pairs doped into
stoichiometric, antiferromagnetic cuprates is considered. Unrestricted
Hartree-Fock calculations for the three-band Hubbard model are employed to
study spin-polaron and vortex-like (meron) solutions. Meron solutions for a
single hole are found to be metastable with higher energy than spin polarons.
We observe that the meron solution shifts from site-centered to bond-centered
as the interaction is increased. Meron-antimeron solutions for hole pairs are
found to be unstable. The results are in agreement with earlier findings for
the one-band Hubbard model. However, we find that the Hubbard interaction of
the one-band model has to be chosen similar to the one of the three-band model
to obtain comparable results, not of the order of the charge-transfer gap, as
previously expected.Comment: 7 pages, 6 figure
Autonomous detection and anticipation of jam fronts from messages propagated by inter-vehicle communication
In this paper, a minimalist, completely distributed freeway traffic
information system is introduced. It involves an autonomous, vehicle-based jam
front detection, the information transmission via inter-vehicle communication,
and the forecast of the spatial position of jam fronts by reconstructing the
spatiotemporal traffic situation based on the transmitted information. The
whole system is simulated with an integrated traffic simulator, that is based
on a realistic microscopic traffic model for longitudinal movements and lane
changes. The function of its communication module has been explicitly validated
by comparing the simulation results with analytical calculations. By means of
simulations, we show that the algorithms for a congestion-front recognition,
message transmission, and processing predict reliably the existence and
position of jam fronts for vehicle equipment rates as low as 3%. A reliable
mode of operation already for small market penetrations is crucial for the
successful introduction of inter-vehicle communication. The short-term
prediction of jam fronts is not only useful for the driver, but is essential
for enhancing road safety and road capacity by intelligent adaptive cruise
control systems.Comment: Published in the Proceedings of the Annual Meeting of the
Transportation Research Board 200
Reducing congestion in obstructed highways with traffic data dissemination using adhoc vehicular networks
Vehicle-to-vehicle communications can be used effectively for intelligent transport systems (ITSs) and location-aware services. The ability to disseminate information in an ad hoc fashion allows pertinent information to propagate faster through a network. In the realm of ITS, the ability to spread warning information faster and further is of great advantage to receivers. In this paper we propose and present a message-dissemination procedure that uses vehicular wireless protocols to influence vehicular flow, reducing congestion in road networks. The computational experiments we present show how a car-following model and lane-change algorithm can be adapted to “react” to the reception of information. This model also illustrates the advantages of coupling together with vehicular flow modelling tools and network simulation tools
Road Network Simulation Using FLAME GPU
Demand for high performance road network simulation is increasing due to the need for improved traffic management to cope with the globally increasing number of road vehicles and the poor capacity utilisation of existing infrastructure. This paper demonstrates FLAME GPU as a suitable Agent Based Simulation environment for road network simulations, capable of coping with the increasing demands on road network simulation. Gipps’ car following model is implemented and used to demonstrate the performance of simulation as the problem size is scaled. The performance of message communication techniques has been evaluated to give insight into the impact of runtime generated data structures to improve agent communication performance. A custom visualisation is demonstrated for FLAME GPU simulations and the techniques used are described
Scenario-Based Design Theorizing:The Case of a Digital Idea Screening Cockpit
As ever more companies encourage employees to innovate, a surplus of ideas has become reality in many organizations – often exceeding the available resources to execute them. Building on insights from a literature review and a 3-year collaboration with a banking software provider, the paper suggests a Digital Idea Screening Cockpit (DISC) to address this challenge. Following a design science research approach, it suggests a prescriptive design theory that provides practitioner-oriented guidance for implementing a DISC. The study shows that, in order to facilitate the assessment, selection, and tracking of ideas for different stakeholders, such a system needs to play a dual role: It needs to structure decision criteria and at the same be flexible to allow for creative expression. Moreover, the paper makes a case for scenario-based design theorizing by developing design knowledge via scenarios
A new multi-anticipative car-following model with consideration of the desired following distance
We propose in this paper an extension of the multi-anticipative optimal velocity car-following model to consider explicitly the desired following distance. The model on the following vehicle’s acceleration is formulated as a linear function of the optimal velocity and the desired distance, with reaction-time delay in elements. The linear stability condition of the model is derived. The results demonstrate that the stability of traffic flow is improved by introducing the desired following distance, increasing the time gap in the desired following distance or decreasing the reaction-time delay. The simulation results show that by taking into account the desired following distance as well as the optimal velocity, the multi-anticipative model allows longer reaction-time delay in achieving stable traffic flows
- …
