2,353 research outputs found

    Quantum behaviour of hydrogen and muonium in vacancy-containing complexes in diamond

    Get PDF
    Most solid-state electronic structure calculations are based on quantum electrons and classical nuclei. These calculations either omit quantum zero-point motion and tunnelling, or estimate it in an extra step. Such quantum effects are especially significant for light nuclei, such as the proton or its analogue, μ+. We propose a simple approach to including such quantum behaviour, in a form readily integrated with standard electronic structure calculations. This approach is demonstrated for a number of vacancy-containing defect complexes in diamond. Our results suggest that for the NHV- complex, quantum motion of the proton between three equivalent potential energy minima is sufficiently rapid to time-average measurements at X-band frequencies

    Three `species' of Schr\"odinger cat states in an infinite-range spin model

    Full text link
    We explore a transverse-field Ising model that exhibits both spontaneous symmetry-breaking and eigenstate thermalization. Within its ferromagnetic phase, the exact eigenstates of the Hamiltonian of any large but finite-sized system are all Schr\"odinger cat states: superpositions of states with `up' and `down' spontaneous magnetization. This model exhibits two dynamical phase transitions {\it within} its ferromagnetic phase: In the lowest-temperature phase the magnetization can macroscopically oscillate between up and down. The relaxation of the magnetization is always overdamped in the remainder of the ferromagnetic phase, which is divided in to phases where the system thermally activates itself {\it over} the barrier between the up and down states, and where it quantum tunnels.Comment: 7 pages, added numerical result

    A Small Interstellar Probe to the Heliospheric Boundary and Interstellar Space

    Get PDF
    The Small Interstellar Probe m1ss1on would be designed to cross the solar wind termination shock and the heliopause, and make a significant penetration into nearby interstellar space. The principal scientific objectives of this mission would be to explore the structure of the heliosphere, to investigate its interaction with the interstellar medium, and to explore the nature of the interstellar medium itself. These studies would be carried out by a ~200 kg spacecraft carrying a scientific payload designed to make comprehensive, in situ measurements of both heliospheric and interstellar plasma, fields, energetic particles, gas, and dust. New trajectory calculations indicate significantly improved performance over earlier studies with larger spacecraft, including spacecraft velocities ranging from -6 to -14 AU/yr., depending on trajectory and launch vehicle

    Optical excitation of MgO nanoparticles:a computational perspective

    Get PDF
    The optical absorption spectra of magnesium oxide (MgO) nanoparticles, along with the atomic centres responsible, are studied using a combination of time-dependent density functional theory (TD-DFT) and coupled-cluster methods. We demonstrate that TD-DFT calculations on MgO nanoparticles require the use of range-separated exchange–correlation (XC-) functionals or hybrid XC-functionals with a high percentage of Hartree–Fock like exchange to circumvent problems related to the description of charge-transfer excitations. Furthermore, we show that the vertical excitations responsible for the experimentally studied range of the spectra of the MgO nanoparticles typically involve both 3-coordinated corner sites and 4-coordinated edge sites. We argue therefore that to label peaks in these absorption spectra exclusively as either corner or edge features does not provide insight into the full physical picture

    Use of virtual reality in mining education and training

    Get PDF

    Importance of quantum tunneling in vacancy-hydrogen complexes in diamond

    Get PDF
    Our ab initio calculations of the hyperfine parameters for negatively charged vacancy-hydrogen and nitrogen-vacancy-hydrogen complexes in diamond compare static defect models and models which account for the quantum tunneling behavior of hydrogen. The static models give rise to hyperfine splittings that are inconsistent with the experimental electron paramagnetic resonance data. In contrast, the hyperfine parameters for the quantum dynamical models are in agreement with the experimental observations. We show that the quantum motion of the proton is crucial to the prediction of symmetry and hyperfine constants for two simple defect centers in diamond. Static a priori methods fail for these systems

    Investigation of the reactivity of AlCl3 and CoCl2 toward molten alkali-metal nitrates in order to synthesize CoAl2O4

    Get PDF
    Cobalt aluminate CoAl2O4 powder, constituted of nano-sized crystallites, is prepared, involving the reactivity of AlCl3 and CoCl2 with molten alkali-metal nitrates. The reaction at 450 °C for 2 h leads to a mixture of spinel oxide Co3O4 and amorphous γ-Al2O3. It is transformed into the spinel oxide CoAl2O4 by heating at 1000 °C. The powders are mainly characterized by XRD, FTIR, ICP, electron microscopy and diffraction, X-EDS and diffuse reflection. Their properties are compared to those of powders obtained by solid state reactions of a mechanical mixture of chlorides or oxides submitted to the same thermal treatment

    Validation of SCIAMACHY top-of-atmosphere reflectance for aerosol remote sensing using MERIS L1 data

    Get PDF
    Aerosol remote sensing is very much dependent on the accurate knowledge of the top-of-atmosphere (TOA) reflectance measured by a particular instrument. The status of the calibration of such an instrument is reflected in the quality of the aerosol retrieval. Current data of the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument (operated with the data processor version 5 and earlier) give too small values of the TOA reflectance, compared e.g. to data from MERIS (Medium Resolution Imaging Spectrometer), both operating on ENVISAT (ENVIronmental SATellite). This effect causes retrievals of wrong aerosol optical thickness and disables the processing of aerosol parameters. <br><br> From an inter-comparison of MERIS and SCIAMACHY TOA reflectance, for collocated scenes correction factors are derived to improve the insufficient SCIAMACHY L1 data calibration for data obtained with the processor 5 for the purpose of aerosol remote sensing. The corrected reflectance has been used for tests of remote sensing of the aerosol optical thickness by the BAER (Bremen AErosol Retrieval) approach using SCIAMACHY data

    Characterising the seasonal and geographical variability in tropospheric ozone, stratospheric influence and recent changes

    Get PDF
    The stratospheric contribution to tropospheric ozone (O3) has been a subject of much debate in recent decades but is known to have an important influence. Recent improvements in diagnostic and modelling tools provide new evidence that the stratosphere has a much larger influence than previously thought. This study aims to characterise the seasonal and geographical distribution of tropospheric ozone, its variability, and its changes and provide quantification of the stratospheric influence on these measures. To this end, we evaluate hindcast specified-dynamics chemistry–climate model (CCM) simulations from the European Centre for Medium-Range Weather Forecasts – Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model and the Canadian Middle Atmosphere Model (CMAM), as contributed to the International Global Atmospheric Chemistry – Stratosphere-troposphere Processes And their Role in Climate (IGAC-SPARC) (IGAC–SPARC) Chemistry Climate Model Initiative (CCMI) activity, together with satellite observations from the Ozone Monitoring Instrument (OMI) and ozone-sonde profile measurements from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) over a period of concurrent data availability (2005–2010). An overall positive, seasonally dependent bias in 1000–450 hPa (∼0–5.5 km) sub-column ozone is found for EMAC, ranging from 2 to 8 Dobson units (DU), whereas CMAM is found to be in closer agreement with the observations, although with substantial seasonal and regional variation in the sign and magnitude of the bias (∼±4 DU). Although the application of OMI averaging kernels (AKs) improves agreement with model estimates from both EMAC and CMAM as expected, comparisons with ozone-sondes indicate a positive ozone bias in the lower stratosphere in CMAM, together with a negative bias in the troposphere resulting from a likely underestimation of photochemical ozone production. This has ramifications for diagnosing the level of model–measurement agreement. Model variability is found to be more similar in magnitude to that implied from ozone-sondes in comparison with OMI, which has significantly larger variability. Noting the overall consistency of the CCMs, the influence of the model chemistry schemes and internal dynamics is discussed in relation to the inter-model differences found. In particular, it is inferred that CMAM simulates a faster and shallower Brewer–Dobson circulation (BDC) compared to both EMAC and observational estimates, which has implications for the distribution and magnitude of the downward flux of stratospheric ozone over the most recent climatological period (1980–2010). Nonetheless, it is shown that the stratospheric influence on tropospheric ozone is significant and is estimated to exceed 50 % in the wintertime extratropics, even in the lower troposphere. Finally, long-term changes in the CCM ozone tracers are calculated for different seasons. An overall statistically significant increase in tropospheric ozone is found across much of the world but particularly in the Northern Hemisphere and in the middle to upper troposphere, where the increase is on the order of 4–6 ppbv (5 %–10 %) between 1980–1989 and 2001–2010. Our model study implies that attribution from stratosphere–troposphere exchange (STE) to such ozone changes ranges from 25 % to 30 % at the surface to as much as 50 %–80 % in the upper troposphere–lower stratosphere (UTLS) across some regions of the world, including western Eurasia, eastern North America, the South Pacific and the southern Indian Ocean. These findings highlight the importance of a well-resolved stratosphere in simulations of tropospheric ozone and its implications for the radiative forcing, air quality and oxidation capacity of the troposphere
    corecore