316 research outputs found

    Clustering of Photometric Luminous Red Galaxies II: Cosmological Implications from the Baryon Acoustic Scale

    Full text link
    A new determination of the sound horizon scale in angular coordinates is presented. It makes use of ~ 0.6 x 10^6 Luminous Red Galaxies, selected from the Sloan Digital Sky Survey imaging data, with photometric redshifts. The analysis covers a redshift interval that goes from z=0.5 to z=0.6. We find evidence of the Baryon Acoustic Oscillations (BAO) signal at the ~ 2.3 sigma confidence level, with a value of theta_{BAO} (z=0.55) = (3.90 \pm 0.38) degrees, including systematic errors. To our understanding, this is the first direct measurement of the angular BAO scale in the galaxy distribution, and it is in agreement with previous BAO measurements. We also show how radial determinations of the BAO scale can break the degeneracy in the measurement of cosmological parameters when they are combined with BAO angular measurements. The result is also in good agreement with the WMAP7 best-fit cosmology. We obtain a value of w_0 = -1.03 \pm 0.16 for the equation of state parameter of the dark energy, Omega_M = 0.26 \pm 0.04 for the matter density, when the other parameters are fixed. We have also tested the sensitivity of current BAO measurements to a time varying dark energy equation of state, finding w_a = 0.06 \pm 0.22 if we fix all the other parameters to the WMAP7 best-fit cosmology.Comment: 7 pages, 7 figures, Accepted for publication to MNRA

    The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature

    Get PDF
    We present significant improvements in cosmic distance measurements from the WiggleZ Dark Energy Survey, achieved by applying the reconstruction of the baryonic acoustic feature technique. We show using both data and simulations that the reconstruction technique can often be effective despite patchiness of the survey, significant edge effects and shot-noise. We investigate three redshift bins in the redshift range 0.2 < z < 1, and in all three find improvement after reconstruction in the detection of the baryonic acoustic feature and its usage as a standard ruler. We measure model-independent distance measures D_V(r_s^(fid)/r_s) of 1716 ± 83, 2221 ± 101, 2516 ± 86 Mpc (68 per cent CL) at effective redshifts z = 0.44, 0.6, 0.73, respectively, where D_V is the volume-averaged distance, and r_s is the sound horizon at the end of the baryon drag epoch. These significantly improved 4.8, 4.5 and 3.4 per cent accuracy measurements are equivalent to those expected from surveys with up to 2.5 times the volume of WiggleZ without reconstruction applied. These measurements are fully consistent with cosmologies allowed by the analyses of the Planck Collaboration and the Sloan Digital Sky Survey. We provide the D_V(r_s^(fid)/r_s) posterior probability distributions and their covariances. When combining these measurements with temperature fluctuations measurements of Planck, the polarization of Wilkinson Microwave Anisotropy Probe 9, and the 6dF Galaxy Survey baryonic acoustic feature, we do not detect deviations from a flat Λ cold dark matter (ΛCDM) model. Assuming this model, we constrain the current expansion rate to H_0 = 67.15 ± 0.98 km s^(−1)Mpc^(−1). Allowing the equation of state of dark energy to vary, we obtain w_(DE) = −1.080 ± 0.135. When assuming a curved ΛCDM model we obtain a curvature value of Ω_K = −0.0043 ± 0.0047

    An improved protocol for the preparation of 5, 11-dialkyl-6, 12-di(hetero)aryl-5, 11-dihydroindolo[3, 2-b]carbazoles and synthesis of their new 2, 8-dicyano-/2, 8-bis(benzo[d]thiazol-2-yl)-substituted derivatives

    Full text link
    A number of 5, 11-dialkyl-6, 12-di(hetero)aryl-5, 11-dyhydroindolo[3, 2-b]carbazoles has been synthesized by modified method based on HBr catalyzed condensation of (hetero)aromatic aldehydes with indole in MeCN solution affording 5, 6, 11, 12-tetrahydroindolo[3, 2-b]carbazoles, that have been aromatized with I2 in DMF solution for 1 h at reflux, followed by alkylation of 5, 11-dihydro compounds. New 2, 8-dicyano-(10 examples) as well as 2, 8-bis(benzo[d]thiazol-2-yl)-substituted (5 examples) derivatives of these 5, 11-dyhydroindolo[3, 2-b]carbazoles have been obtained through their initial C2, 8-formylation, followed by treatment of dialdehydes with excess of hydroxylamine and dehydration of the formed aldoximes with acetic anhydride or by interaction with excess of 2-aminothiophenol in DMSO solution, respectively. © 2018 Arkat. All rights reserved.This research study was supported financially by the Russian Science Foundation (Project No. 16-13-10435)

    Synthesis of aryl-substituted thieno[3,2-b]thiophene derivatives and their use for N,S-heterotetracene construction

    Get PDF
    Fiesselmann thiophene synthesis was applied for the convenient construction of thieno[3,2-b]thiophene derivatives. Thus, new 5- or 6-aryl-3-hydroxythieno[3,2-b]thiophene-2-carboxylates were obtained by condensation of 5- or 4-aryl-3-chlorothiophene-2-carbox-ylates, respectively, with methyl thioglycolate in the presence of potassium tert-butoxide. The saponification of the resulting esters, with decarboxylation of the intermediating acids, gave the corresponding thieno[3,2-b]thiophen-3(2H)-ones. The latter ketones were used to synthesize new N,S-heterotetracenes, namely 9H-thieno[2',3':4,5]thieno[3,2-b]indoles by their treatment with arylhydrazines in accordance with the Fischer indolization reaction. © 2019 Demina et al.; licensee Beilstein-Institut.Russian Foundation for Basic Research, RFBR: 18-33-20083This study was supported by the Russian Foundation for Basic Research, Grant No. 18-33-20083

    Detecting Baryon Acoustic Oscillations

    Full text link
    Baryon Acoustic Oscillations are a feature imprinted in the galaxy distribution by acoustic waves traveling in the plasma of the early universe. Their detection at the expected scale in large-scale structures strongly supports current cosmological models with a nearly linear evolution from redshift approximately 1000, and the existence of dark energy. Besides, BAOs provide a standard ruler for studying cosmic expansion. In this paper we focus on methods for BAO detection using the correlation function measurement. For each method, we want to understand the tested hypothesis (the hypothesis H0 to be rejected) and the underlying assumptions. We first present wavelet methods which are mildly model-dependent and mostly sensitive to the BAO feature. Then we turn to fully model-dependent methods. We present the most often used method based on the chi^2 statistic, but we find it has limitations. In general the assumptions of the chi^2 method are not verified, and it only gives a rough estimate of the significance. The estimate can become very wrong when considering more realistic hypotheses, where the covariance matrix of the measurement depends on cosmological parameters. Instead we propose to use a new method based on two modifications: we modify the procedure for computing the significance and make it rigorous, and we modify the statistic to obtain better results in the case of varying covariance matrix. We verify with simulations that correct significances are different from the ones obtained using the classical chi^2 procedure. We also test a simple example of varying covariance matrix. In this case we find that our modified statistic outperforms the classical chi^2 statistic when both significances are correctly computed. Finally we find that taking into account variations of the covariance matrix can change both BAO detection levels and cosmological parameter constraints

    An Approach to the Construction of Benzofuran-Thieno[3,2- b]indole-Cored N,O,S-Heteroacenes Using Fischer Indolization

    Full text link
    A series of 6H-benzofuro[2′,3′:4,5]thieno[3,2-b]indoles were readily synthesized from methyl 3-aminothieno[3,2-b]benzofuran-2-carboxylates using a one-pot procedure with Fischer indolization as the key step. At the same time, 3-aminothieno[3,2-b]benzofuran-2-carboxylates were prepared from 3-chlorobenzofuran-2-carbaldehydes in three steps, including replacement of the Cl atom at the C-3 position of these starting substrates onto the -SCH2CO2Me moiety, conversion of the CHO group at the C-2 position into the CN group, followed by base-promoted cyclization of the formed carbonitrile. The present route was elaborated by us because we failed to obtain directly the desired 3-aminothiophene-2-carboxylate by reaction of 3-chlorobenzofuran-2-carbonitrile with methyl thioglycolate in the presence of various bases. In turn, 3-chlorobenzofuran-2-carbaldehydes were prepared from benzofuran-3(2H)-ones following the Vilsmeier-Haack-Arnold reaction. © 2021 The Authors. Published by American Chemical Society.The research was financially supported by the Russian Science Foundation (project no. 18-13-00409)

    Improved background subtraction for the Sloan Digital Sky Survey images

    Full text link
    We describe a procedure for background subtracting Sloan Digital Sky Survey (SDSS) imaging that improves the resulting detection and photometry of large galaxies on the sky. Within each SDSS drift scan run, we mask out detected sources and then fit a smooth function to the variation of the sky background. This procedure has been applied to all SDSS-III Data Release 8 images, and the results are available as part of that data set. We have tested the effect of our background subtraction on the photometry of large galaxies by inserting fake galaxies into the raw pixels, reanalyzing the data, and measuring them after background subtraction. Our technique results in no size-dependent bias in galaxy fluxes up to half-light radii of 100 arcsec; in contrast, for galaxies of that size the standard SDSS photometric catalog underestimates fluxes by about 1.5 mag. Our results represent a substantial improvement over the standard SDSS catalog results and should form the basis of any analysis of nearby galaxies using the SDSS imaging data.Comment: accepted by the Astronomical Journa

    Very large scale correlations in the galaxy distribution

    Full text link
    We characterize galaxy correlations in the Sloan Digital Sky Survey by measuring several moments of galaxy counts in spheres. We firstly find that the average counts grows as a power-law function of the distance with an exponent D= 2.1+- 0.05 for r in [0.5,20] Mpc/h and D = 2.8+-0.05 for r in [30,150] Mpc/h. In order to estimate the systematic errors in these measurements we consider the counts variance finding that it shows systematic finite size effects which depend on the samples sizes. We clarify, by making specific tests, that these are due to galaxy long-range correlations extending up to the largest scales of the sample. The analysis of mock galaxy catalogs, generated from cosmological N-body simulations of the standard LCDM model, shows that for r<20 Mpc/h the counts exponent is D~2.0, weakly dependent on galaxy luminosity, while D=3 at larger scales. In addition, contrary to the case of the observed galaxy samples, no systematic finite size effects in the counts variance are found at large scales, a result that agrees with the absence of large scale, r~100 Mpc/h, correlations in the mock catalogs. We thus conclude that the observed galaxy distribution is characterized by correlations, fluctuations and hence structures, which are larger, both in amplitude and in spatial extension, than those predicted by the standard model LCDM of galaxy formation.Comment: 6 pages, 7 figures to be published in Europhysics Letter
    corecore