503 research outputs found
The charge-dyon bound system in the spherical quantum well
The spherical wave functions of charge-dyon bounded system in a rectangular
spherical quantum dot of infinitely and finite height are calculated. The
transcendent equations, defining the energy spectra of the systems are
obtained. The dependence of the energy levels from the wall sizes is found.Comment: 8 pages, 5 figure
On one mechanism of light ablation of nanostructures
The mechanism of mechanical ablation of nanoparticles during the interaction with a high-power laser radiation pulse is proposed. A particle is polarized under a laser electric field, and electric forces acting on field-induced oppositesign charges cause rupture stresses. Upon reaching the stresses exceeding the maximum allowable values for a given material, a nanoparticle decays into two ones. This effect can be used for narrowing the size distribution of nanoparticles produced by the laser ablation method
On double Hurwitz numbers in genus 0
We study double Hurwitz numbers in genus zero counting the number of covers
\CP^1\to\CP^1 with two branching points with a given branching behavior. By
the recent result due to Goulden, Jackson and Vakil, these numbers are
piecewise polynomials in the multiplicities of the preimages of the branching
points. We describe the partition of the parameter space into polynomiality
domains, called chambers, and provide an expression for the difference of two
such polynomials for two neighboring chambers. Besides, we provide an explicit
formula for the polynomial in a certain chamber called totally negative, which
enables us to calculate double Hurwitz numbers in any given chamber as the
polynomial for the totally negative chamber plus the sum of the differences
between the neighboring polynomials along a path connecting the totally
negative chamber with the given one.Comment: 17 pages, 3 figure
Changes of the body functions during long-term hypokinesia
Prolonged hypokinesis (100-170 days) studied in 2000 rats kept in cages limiting their mobility provoked considerable changes in the gaseous and energetic metabolism: an elevation of the total gaseous metabolism and of the rate of O2 requirement by the muscles (in the late periods of hypokinesis) and a change in the intensity of tissue respiration of the liver and myocardium. There also proved to be a reduction in the level of phosphorylation and separation of oxidative phosphorylation in the myocardium, liver, and partially in the skeletal muscle. Prolonged hypokinesia led to changes in tissue metabolism: a disturbance of development of the animals, a marked delay and an increase in the weight of the organism and the muscular system, and disturbances of the mineral and protein metabolism. Prolonged hypokinesis also lead to exhaustion of the hypothalamus-hypophysis-adrenal cortex system
Titanium compounds as catalysts of higher alpha-olefin-based super-high-molecular polymers synthesis
The synthesis of polymers of 10 million or more molecular weight is a difficult task even in a chemical lab. Higher α-olefin-based polymer agents of such kind have found a narrow but quite important niche, the reduction of drag in the turbulent flow of hydrocarbon fluids such as oil and oil-products. In its turn, searching for a catalytic system capable to produce molecules of such a high length and to synthesize polymers of a low molecular-mass distribution is part of a global task of obtaining a high-quality product. In this paper we had observed a number of industrial catalysts with respect to their suitability for higher poly-α- olefins synthesis. A number samples representing copolymers of 1-hexene with 1-decene obtained on a previous generation catalyst, a microsphere titanium chloride catalytic agent had been compared to samples synthesized using a titanium-magnesium catalyst both in solution and in a polymer medium
Application of the Gadolinium Isotopes Nuclei Neutron-Induced Excitation Process
The possibility of transformation of energy of fast and epithermal neutrons to energy of coherent photon radiation at the expense of a neutron pumping of the active medium formed by nucleus with long-living isomerous states is theoretically described. The channel of the nucleus formation in isomeric state as a daughter nucleus resulting from the nuclear reaction of neutron capture by a lighter nucleus is taken into consideration for the first time. The analysis of cross sections’ dependence of radiative neutron capture by the nuclei of gadolinium isotopes Gd155 and Gd156 is performed. As a result, it is stated that the speed of Gd156 nuclei formation exceeds the speed of their “burnup” in the neutron flux. It is provided by a unique combination of absorbing properties of two isotopes of gadolinium Gd155 and Gd156 in both thermal and resonance regions of neutron energy. Conditions required for making isotope nuclei excited by forward neutron scattering on nuclei and for storing nuclei in excited states are formulated. The possibility of excess energy accumulation in the participating medium created by the nuclei of the pair of gadolinium isotopes Gd155 and Gd156 due to formation and storage of nuclei in isomeric state at radiative neutron capture by the nuclei of the stable isotope with a smaller mass is shown. It is concluded that when the active medium created by gadolinium nuclei is pumped by neutrons with the flux density of the order of 1013 cm−2 s−1, the condition of levels population inversion can be achieved in a few tens of seconds. The wave length of the radiation generated by the medium is 0.0006 nm
- …