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ABSTRACT 
 

The mechanism of mechanical ablation of nanoparticles during the interaction with a high-power laser radiation 
pulse is proposed. A particle is polarized under a laser electric field, and electric forces acting on field-induced opposite-
sign charges cause rupture stresses. Upon reaching the stresses exceeding the maximum allowable values for a given 
material, a nanoparticle decays into two ones. This effect can be used for narrowing the size distribution of nanoparticles 
produced by the laser ablation method. 

 
Ablation of nanoparticles, field-induced charges, rupture stresses. 
 

1. INTRODUCTION 
 

Metal ablation by laser radiation is widely used to fabricate thin films, nanoparticles, and other nanoobjects1.  
Thermal and nonthermal ablation mechanisms are distinguished. During thermal ablation upon exposure to LPs, the 
target surface is locally heated above a certain critical temperature, which results in target material vaporization with the 
solid-gas or solid-plasma transition followed by NP condensation. During nonthermal ablation, target material is 
detached by electric forces. The determining factor in nonthermal ablation is the Coulomb explosion effect2 at which 
electrons gain the LP energy and are vaporized from the target surface, having no time to transfer the energy to the 
lattice. The appearing positive space charge causes ion ejection. The characteristic time of this process is ~100 fs. 

 
2. OBJECTIVE OF THE STUDY 

 
In this paper, we consider the mechanism of mechanical grinding of metal NPs under an electric field of LP. The 

electric field polarizes NPs with the result of the formation of opposite-sign surface charges to which electric forces are 
applied, which cause mechanical stresses in the particle volume. 

 
 

3. THEORETICAL TREATMENT OF THE INTERACTION OF HIGH-POWER LASER RADIATION WITH 
NANOSTRUCTURES 

 
3.1. Interaction of the high-power laser pulse (LP) with a nanoparticle 
 

Let us consider the interaction of the high-power laser pulse (LP) with a nanoparticle (NP). What time scales will 
be considered? First, we note that the time of field propagation over the nanoparticle volume is small, τ = 2a/c ≤ 10-17 s, 
for particles with diameters smaller than 10 nm. This time is smaller than the oscillation period in the incident optical-
range wave, τν = 1.6·10-15 s, and is much smaller than the particle thermalization time, i.e., the characteristic time of the 
energy transfer from the electron gas to the lattice, τi ~ 10-12 s. 

 
Let us consider two models describing the interaction of the NP and radiation, relevant to various LP durations. 

The first model deals with femtosecond pulses, when the LP duration p iτ τ<< ; the second model concerns pico- and 

nanosecond pulses, when p iτ τ>> . Let us begin with the first one. 
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The optical frequency field for NPs can be considered to be quasi-static, c ντ τ<< ; c ντ τ<< ; the electron gas 
can be considered to be an ideal conductor. The field induced when a metal sphere is polarized in a uniform electric field 
can be described by the potential 

 ( )
3

0 3, 1 aE r
r

⎛ ⎞
Φ = − ⋅ −⎜ ⎟

⎝ ⎠

r r
 (1)

where 0E
r

 is the external electrostatic field strength, a is the sphere radius, and rr  is the vector from the sphere center to 
the observation point. The electric field strength on the sphere surface is written as 

 ( )03 ,r aE E n n== −∇Φ = ⋅ ⋅
r r r r
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rn
r

=
r

r
 is the outward normal vector to the sphere surface. The surface electric charge density corresponding to 

(2) is ( )0
3 ,
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. The force acting on the surface element dS  is given by 
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Let us calculate the force acting on the sphere surface element cut by a cone with an axis coinciding with the 

direction 0E
r

 and the opening angle ϑ , 

 ( )2 2 4
0

9 1 cos
16

f E a ϑ= ⋅ ⋅ ⋅ − , (4)

The stress arising at the base of the corresponding spherical segment is obtained by dividing Eq. (4) by the segment area 
2 2sinaπ ϑ , where 2

04 o
cI Eε
π

= ⋅ ⋅  is the LP intensity and c is the speed of light. Thus, we have  

 ( )2
12 275 1 cos
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W cm
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= ⋅ ⋅ +⎜ ⎟

⎝ ⎠
, (5)

As can that during the interaction of the gold NP with LPs, even at an intensity of 1012 W/cm2, stresses comparable with 
ultimate rupture stresses for macroscopic gold arise in the NP, 100AuT MPa . We can see from Eq. (5) that the 

maximum stress appears near sphere poles at small angles ϑ ; in the equatorial plane ( 2ϑ π= ), the stress is minimum. 
The effect of electron loss upon exposure to LPs, causing a positive NP charge, increases mechanical stresses in the NP 
volume; however, a moderate NP charge is insufficient to detach ions from the NP surface and to develop the Coulomb 
explosion. 
 

Let us pay attention to the possible effect of laser cleaning or nanopolishing. If an NP contains any defect 
leading to an NP shape deviation from spherical, a larger higher charge will concentrate on a corresponding bump during 
NP polarization, which will result in detachment of exactly this bump in the first place. The energy transferred to the 
electron gas can be estimated having calculated the potential energy of charges on the polarized sphere surface, 

1
2

W dSσ= Φ∫ , where the potential Ф contains two terms (see (1)): the potential induced by external charges, 

( )1 0 ,E rΦ = −
r r

, and the potential of charges on the polarized sphere ( )
3

2 0 3, aE r
r

Φ = ⋅
r r

. In calculating the energy of 

separated charges, we should take into account only 2Φ , 
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Considering that this energy after pulse passing transforms to heat, we estimate the particle temperature change, taking 
the macroscopic value of the gold specific heat, 

 12 2

3 1 20
2 10Au Au

W I IT K
C m c C W smρ

⎛ ⎞
Δ = = ⋅ = ⋅⎜ ⎟⋅ ⋅ ⎝ ⎠

, (7)

where m is the particle mass, 130Au
JC

kg K
=

⋅
 is the gold specific heat, and 319.3 g

cm
ρ =  is the gold density. 

 
3.2 Case of long laser pulses 
 

Let us now consider the sufficiently long-term NP--NP interaction, i.e., p iτ τ>> . For the time pτ , collective 
processes have time to be included, and we can describe NP electromagnetic properties in terms of the permittivity, 
expecting that the values of ε  will appear close to those measured for macroscopic samples. 
 

Let us calculate the fields induced during scattering of a monochromatic plane wave of frequency ω  by a metal 

sphere. As is known, the field components ,E H
r r

 can be expressed in spherical coordinates in terms of the potentials 

denote here by ,p pR Q , 
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Нere ,ϑ ϕ  are the polar and azimuthal angles of the spherical coordinate system. Let ( ), ,r ϑ ϕ  be the spherical 

coordinates in the system with the polar axis directed along the wave vector k
r

, 
2k εω= , where ε  is the 

permittivity of the corresponding medium at the wave frequency. The subscript p indicate the values related to the 
incident wave; the subscript i,o relate to the transmitted and reflected waves, respectively. The continuity conditions on 
the surface of the sphere of tangential tE  and tH  strength components and normal rEε  and rH  induction 
components lead to the conditions 

 
( ) ( ) ( )
( ) ( ) ( )

i i o o o p r i r o r p

i o p r i r o r p

R R R rR rR rR

Q Q Q rQ rQ rQ

ε ε ε= + ∂ = ∂ + ∂

= + ∂ = ∂ + ∂
 (9)

Let us consider a linearly polarized wave. The nonzero components are given by 
 ( ) ( )exp cos exp cosx p y pE E ikr H H ikrϑ ϑ= ⋅ = − ⋅ , (10)

where p pkE Hω= . Since the potentials pR  and pQ  satisfy the wave equation, they can be presented as expansions in 
spherical functions, 

 ( ) ( ), , , , , , , ,
J J J J

p p lm p lm p lm p lm p p lm p lm p lm p lm
lm lm

R a b Q c d= Ψ + Θ = Ψ + Θ∑ ∑ , (11)

where eigenfunctions are chosen in the form 
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For the expansion coefficients, we can obtain the expressions  

 ( ) ( ), 1 , 11 1
p p

p l p l

i E i H
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, (13)

Other coefficients disappear. 
 

We present the potentials of scattered and transmitted waves also in the form of expansions, 
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where eigenfunctions have the form 
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The scattered wave (-length) is described by the Hankel function ( ) ( ) ( )H z J z i Y zν ν ν= + ⋅ ; the field within the 

particle is described by the modified Bessel function ( )I prν , where ip ω ε= ⋅ − . 
 
From boundary conditions (9), we can obtain equations for the coefficients , , ,, , ...o lm i lm o lma a b  which include the 

values of the radial functions ( ) ( ) ( )1 2 1 2 1 2, ,l l lJ kr H kr I pr+ + +  on the sphere surface. Taking into account that we 

assume the NP size to be much smaller than the incident radiation wavelengths, 1; 1ka pa<< << , we use the Bessel 
function expansions at small argument values, 
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Solving the system of linear equations obtained taking into account (18), we find 
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Other coefficients are zero. 
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Now, from Eq. (8), we can calculate radial components of the electric field strength on the sphere surface, 
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The jump of the radial field component on the sphere surface is related to the polarization sphere phenomenon and the 
surface charge formation, 

 ( ), , ,
1

4l r ol r pl r ilE E Eσ
π

= ⋅ + − , (22)

We can see from Eq. (21) that the effect decreases with increasing harmonic number l due to the multiplier ( )lka . Let us 
consider the harmonic with l = 1. From Eq. (21), we find 
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Let us calculate the tangential components of the electric field on the sphere surface. Due to the continuity of the 
tangential components, it is sufficient to calculate ,11 ,11,i iE Eϑ ϕ . Near the sphere surface, the potentials have the form 
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From Eqs. (1-7), we find 
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The calculation of the normal force component acting on the surface charge is nontrivial, since the normal 

component exhibits a surface discontinuity. Solving this problem, we come to the result 
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where efE
r

 is the effective field acting by force on the surface element dS . From Eqs. (25) and (26), we can see that the 

effective field can be presented by the sum eff a bE E E= +
r r r

. Introducing the Cartesian unit vector i
r

 and the normal 

vector to the sphere surface nr , we find 
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The charge density is also expressed in terms of the vectors i
r

 and nr , 
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Let us calculate the force averaged over the period, acting on a three-dimensional sector cut on a sphere by a cone 
with an axis coinciding with the vector i

r
 and the opening angle γ . We introduce an alternate spherical coordinate 

system ( ), ,r ϑ ϕ% %  with a polar axis directed along the incident wave polarization vector pE
r

 collinear to i
r

. Then the 

sought force can be expressed through the integrals 
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Here  
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Angle brackets mean averaging over the oscillation period. 
 
We calculate the stress as the ratio of the force to the sector base area 2 2sinπρ γ . 
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, (31)

 
 

Let us estimate the NP temperature change for the LP passage time. The energy released per unit volume per unit 
time is given by the relationship 

 
2

8 iQ Eω ε
π

′′= ⋅ ⋅ , (32)

 
Substituting the gold specific heat and density, we find  

 ( )3
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4. CONCLUSIONS 
 

It was shown that NP heating by fs pulses plays an important role at LP radiation densities above 1014 W/cm2. At 
the same time, we can see that, at the chosen LP intensities and durations when operating, the temperature reaches values 
exceeding the gold boiling point 3129evT K= . However, when using the laser in the near infrared region, the effect of 
NP heating is no longer determining. From this, we can conclude that such LP intensity and duration in the near IR 
region can be selected for gold NPs that the ablation effect can be observed without NP vaporization. 

 
REFERENCES 

 
[1] Makarov, G. N., “Laser applications in nanotechnology: nanofabrication using laser ablation and laser 
nanolithography,” Phys. Usp. 56(7), 643-682 (2013). 
[2] Stoian, R., Rosenfeld, A., Ashkenasi, D., Hertel, I. V., Bulgakova, N. M. and Campbell, E. E. B., “Surface Charging 
and Impulsive Ion Ejection during Ultrashort Pulsed laser Ablation,” Phys. Rev. Lett. 88(9), 097603 (2002). 

Proc. of SPIE Vol. 10614  1061415-6

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 5/7/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use




