114 research outputs found

    Impurity and strain effects on the magnetotransport of La1.85Sr0.15Cu(1-y)Zn(y)O4 films

    Full text link
    The influence of zinc doping and strain related effects on the normal state transport properties(the resistivity, the Hall angle and the orbital magneto- resistance(OMR) is studied in a series of La1.85Sr0.15Cu(1-y)Zn(y)O4 films with values of y between 0 and 0.12 and various degrees of strain induced by the mismatch between the films and the substrate. The zinc doping affects only the constant term in the temperature dependence of cotangent theta but the strain affects both the slope and the constant term, while their ratio remains constant.OMR is decreased by zinc doping but is unaffected by strain. The ratio delta rho/(rho*tan^2 theta) is T-independent but decreases with impurity doping. These results put strong constraints on theories of the normal state of high- temperature superconductors

    Combined potential and spin impurity scattering in cuprates

    Full text link
    We present a theory of combined nonmagnetic and magnetic impurity scattering in anisotropic superconductors accounting for the momentum-dependent impurity potential. Applying the model to the d-wave superconducting state, we obtain a quantitative agreement with the initial suppression of the critical temperature due to Zn and Ni substitutions as well as electron irradiation defects in the cuprates. We suggest, that the unequal pair-breaking effect of Zn and Ni may be related to a different nature of the magnetic moments induced by these impurities.Comment: 5 pages, 3 tables, RevTex, to be published in Phys. Rev.

    Magnetotransport in the Normal State of La1.85Sr0.15Cu(1-y)Zn(y)O4 Films

    Full text link
    We have studied the magnetotransport properties in the normal state for a series of La1.85Sr0.15Cu(1-y)Zn(y)O4 films with values of y, between 0 and 0.12. A variable degree of compressive or tensile strain results from the lattice mismatch between the substrate and the film, and affects the transport properties differently from the influence of the zinc impurities. In particular, the orbital magnetoresistance (OMR) varies with y but is strain-independent. The relations for the resistivity and the Hall angle and the proportionality between the OMR and tan^2 theta are followed about 70 K. We have been able to separate the strain and impurity effects by rewriting the above relations, where each term is strain-independent and depends on y only. We also find that changes in the lattice constants give rise to closely the same fractional changes in other terms of the equation.The OMR is more strongly supressed by the addition of impurities than tan^2 theta. We conclude that the relaxation ratethat governs Hall effect is not the same as for the magnetoresistance. We also suggest a correspondence between the transport properties and the opening of the pseudogap at a temperature which changes when the La-sr ratio changes, but does not change with the addition of the zinc impurities

    Coherent Potential Approximation for `d - wave' Superconductivity in Disordered Systems

    Get PDF
    A Coherent Potential Approximation is developed for s-wave and d-wave superconductivity in disordered systems. We show that the CPA formalism reproduces the standard pair-breaking formula, the self-consistent Born Approximation and the self-consistent T-matrix approximation in the appropriate limits. We implement the theory and compute T_c for s-wave and d-wave pairing using an attractive nearest neighbor Hubbard model featuring both binary alloy disorder and a uniform distribution of scattering site potentials. We determine the density of states and examine its consequences for low temperature heat capacity. We find that our results are in qualitative agreement with measurements on Zn doped YBCO superconductors.Comment: 35 pages, 23 figures, submitted to Phys Rev.

    Magnetic polarons in weakly doped high-Tc superconductors

    Full text link
    We consider a spin Hamiltonian describing dd-dd exchange interactions between localized spins dd of a finite antiferromagnet as well as pp-dd interactions between a conducting hole (pp) and localized spins. The spin Hamiltonian is solved numerically with use of Lanczos method of diagonalization. We conclude that pp-dd exchange interaction leads to localization of magnetic polarons. Quantum fluctuations of the antiferromagnet strengthen this effect and make the formation of polarons localized in one site possible even for weak pp-dd coupling. Total energy calculations, including the kinetic energy, do not change essentially the phase diagram of magnetic polarons formation. For parameters reasonable for high-TcT_c superconductors either a polaron localized on one lattice cell or a small ferron can form. For reasonable values of the dielectric function and pp-dd coupling, the contributions of magnetic and phonon terms in the formation of a polaron in weakly doped high-TcT_c materials are comparable.Comment: revised, revtex-4, 12 pages 8 eps figure

    The ƚnieĆŒka peatland as a candidate for the Global Boundary Stratotype Section and Point for the Anthropocene series

    Get PDF
    The subalpine, atmospherically fed ƚnieĆŒka peatland, located in the Polish part of the Sudetes, is one of the nominated candidates for the GSSP of the Anthropocene. Data from two profiles, Sn1 (2012) and Sn0 (2020), from this site are critical for distinguishing the proposed epoch, while an additional core Sn2 is presented to support main evidence. The Sn0 archive contains a wide array of critical markers such as plutonium (Pu), radiocarbon (F14C), fly ash particles, Hg and stable C and N isotopes which are consistent with the previously well documented 210Pb/14C dated Sn1 profile, which provides a high-resolution and comprehensive database of trace elements and rare earth elements (REE), Pb isotopes, Pu, Cs, pollen and testate amoebae. The 1952 worldwide appearance of Pu, owing to its global synchronicity and repeatability between the cores, is proposed here as a primary marker of the Anthropocene, supported by the prominent upturn of selected chemostratigraphic and biostratigraphic indicators as well as the appearance of technofossils and artificial radionuclides

    Turbulence-induced cloud voids: observation and interpretation

    Get PDF
    The phenomenon of cloud voids, i.e., elongated volumes inside a cloud that are devoid of droplets, was observed with laser sheet photography in clouds at a mountain-top station. Two experimental cases, similar in turbulence conditions yet with diverse droplet size distributions and cloud void prevalence, are reported. A theoretical explanation is proposed based on the study of heavy inertial sedimenting particles inside a Burgers vortex. A general conclusion regarding void appearance is drawn from theoretical analysis. Numerical simulations of polydisperse droplet motion with realistic vortex parameters and Mie scattering visual effects accounted for can explain the presence of voids with sizes similar to that of the observed ones. Clustering and segregation effects in a vortex tube are discussed for reasonable cloud conditions.</p
    • 

    corecore