296 research outputs found

    Penning trap mass measurements on (99-109)$Cd with ISOLTRAP and implications on the rp process

    Get PDF
    Penning trap mass measurements on neutron-deficient Cd isotopes (99-109)Cd have been performed with the ISOLTRAP mass spectrometer at ISOLDE/CERN, all with relative mass uncertainties below 3*10^8. A new mass evaluation has been performed. The mass of 99Cd has been determined for the first time which extends the region of accurately known mass values towards the doubly magic nucleus 100Sn. The implication of the results on the reaction path of the rp process in stellar X-ray bursts is discussed. In particular, the uncertainty of the abundance and the overproduction created by the rp-process for the mass A = 99 is demonstrated by reducing the uncertainty of the proton-separation energy of 100In Sp(100In) by a factor of 2.5.Comment: 14 pages, 9 figure

    Beta decay of 71,73Co; probing single particle states approaching doubly magic 78Ni

    Full text link
    Low-energy excited states in 71,73Ni populated via the {\beta} decay of 71,73Co were investigated in an experiment performed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU). Detailed analysis led to the construction of level schemes of 71,73Ni, which are interpreted using systematics and analyzed using shell model calculations. The 5/2- states attributed to the the f5/2 orbital and positive parity 5/2+ and 7/2+ states from the g9/2 orbital have been identified in both 71,73Ni. In 71Ni the location of a 1/2- {\beta}-decaying isomer is proposed and limits are suggested as to the location of the isomer in 73Ni. The location of positive parity cluster states are also identified in 71,73Ni. Beta-delayed neutron branching ratios obtained from this data are given for both 71,73Co.Comment: Accepted for publication in PR

    The rp-process and new measurements of beta-delayed proton decay of light Ag and Cd isotopes

    Full text link
    Recent network calculations suggest that a high temperature rp-process could explain the abundances of light Mo and Ru isotopes, which have long challenged models of p-process nuclide production. Important ingredients to network calculations involving unstable nuclei near and at the proton drip line are β\beta-halflives and decay modes, i.e., whether or not β\beta-delayed proton decay takes place. Of particular importance to these network calculation are the proton-rich isotopes 96^{96}Ag, 98^{98}Ag, 96^{96}Cd and 98^{98}Cd. We report on recent measurements of β\beta-delayed proton branching ratios for 96^{96}Ag, 98^{98}Ag, and 98^{98}Cd at the on-line mass separator at GSI.Comment: 4 pages, uses espcrc1.sty. Proceedings of the 4th International Symposium Nuclei in the Cosmos, June 1996, Notre Dame/IN, USA, Ed. M. Wiescher, to be published in Nucl.Phys.A. Also available at ftp://ftp.physics.ohio-state.edu/pub/nucex/nic96-gs

    Improving Fission-product Decay Data for Reactor Applications: Part I -- Decay Heat

    Full text link
    Effort has been expended to assess the relative merits of undertaking further decay-data measurements of the main fission-product contributors to the decay heat of neutron-irradiated fissile fuel and related actinides by means of Total Absorption Gamma-ray Spectroscopy (TAGS/TAS) and Discrete Gamma-ray Spectroscopy (DGS). This review has been carried out following similar work performed under the auspices of OECD/WPEC-Subgroup 25 (2005-2007) and the International Atomic Energy Agency (2010, 2014), and various highly relevant TAGS measurements completed as a consequence of such assessments. We present our recommendations for new decay-data evaluations, along with possible requirements for total absorption and discrete high-resolution gamma-ray spectroscopy studies that cover approximately 120 fission products and various isomeric states.Comment: Submitted to European Physical Journal

    Renormalization of the weak hadronic current in the nuclear medium

    Get PDF
    The renormalization of the weak charge-changing hadronic current as a function of the reaction energy release is studied at the nucleonic level. We have calculated the average quenching factors for each type of current (vector, axial vector and induced pseudoscalar). The obtained quenching in the axial vector part is, at zero momentum transfer, 19% for the sd shell and 23% in the fp shell. We have extended the calculations also to heavier systems such as 56^{56}Ni and 100^{100}Sn, where we obtain stronger quenchings, 44% and 59%, respectively. Gamow--Teller type transitions are discussed, along with the higher order matrix elements. The quenching factors are constant up to roughly 60 MeV momentum transfer. Therefore the use of energy-independent quenching factors in beta decay is justified. We also found that going beyond the zeroth and first order operators (in inverse nucleon mass) does not give any substantial contribution. The extracted renormalization to the ratio CP/CAC_P/C_A at q=100 MeV is -3.5%, -7.1$%, -28.6%, and +8.7% for mass 16, 40, 56, and 100, respectively.Comment: 28 pages, 6 figure

    Radioactive decays at limits of nuclear stability

    Full text link
    The last decades brought an impressive progress in synthesizing and studying properties of nuclides located very far from the beta stability line. Among the most fundamental properties of such exotic nuclides, usually established first, is the half-life, possible radioactive decay modes, and their relative probabilities. When approaching limits of nuclear stability, new decay modes set in. First, beta decays become accompanied by emission of nucleons from highly excited states of daughter nuclei. Second, when the nucleon separation energy becomes negative, nucleons start to be emitted from the ground state. Here, we present a review of the decay modes occurring close to the limits of stability. The experimental methods used to produce, identify and detect new species and their radiation are discussed. The current theoretical understanding of these decay processes is overviewed. The theoretical description of the most recently discovered and most complex radioactive process - the two-proton radioactivity - is discussed in more detail.Comment: Review, 68 pages, 39 figure

    β -decay study of Kr 94

    Get PDF
    β decay of neutron-rich nuclide Kr94 was reinvestigated by means of a high resolution on-line mass separator and β-γ spectroscopy. In total 22 γ-ray transitions were assigned to the decay of Kr94, and a new isomeric state was identified. The new information allows us to build detailed levels systematics in a chain of odd-odd rubidium isotopes and draw conclusions on nuclear structure for some of the observed states. The discussed level structure affects the evolution of β-decay half-lives for neutron-rich selenium, krypton, and strontium isotopes

    β and β-n decay of the neutron-rich Ge 84 nucleus

    Get PDF
    The β-decay properties of the very neutron-rich Ge84 nucleus were studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. Several new γ-transitions and levels were added to its decay scheme and the order of the two lowest-lying levels in the daughter As84 was corrected. For the first time γ radiation following β-delayed neutron emission was observed. The shell-model calculations and apparent β transition intensities were used to guide the spin assignment to the As84 levels, in particular for the low-energy part of the level scheme. The new spin-parity (2-) proposed for the ground state of As84 is supported also by the systematics of N=51 isotones
    corecore