1,334 research outputs found
Studying synthesis confinement effects on the internal structure of nanogels in computer simulations
We study the effects of droplet finite size on the structure of nanogel
particles synthesized by random crosslinking of molecular polymers diluted in
nanoemulsions. For this, we use a bead-spring computer model of polymer-like
structures that mimics the confined random crosslinking process corresponding
to irradiation- or electrochemically-induced crosslinking methods. Our results
indicate that random crosslinking under strong confinement can lead to unusual
nanogel internal structures, with a central region less dense than the external
one, whereas under moderate confinement the resulting structure has a denser
central region. We analyze the topology of the polymer networks forming nanogel
particles with both types of architectures, their overall structural
parameters, their response to the quality of the solvent and compare the cases
of non-ionic and ionic systems
Mobility coefficients in the systems of magnetic dipolar particles
In this paper, we present our first results on the mobility coefficients in the systems of magnetic dipolar particles. In our study, we investigate the influence of chain formation and polydispersity of particles on self-diffusion. The work is purely theoretical and combines direct calculations with the density functional approach to calculate equilibrium densities of chains. We study mainly bulk systems. It is shown that the formation of chains leads to the average decrease of mobility in monodisperse systems, but in the case of bidisperse particle size distribution, the particle mobility becomes a function of the fractional composition. The mobility coefficients obtained here are important for calculating the diffusion coefficients in case of gradient-induced diffusion (be that of the field or density gradient) in magnetic fluids with chain aggregates
On the Regularity of Optimal Transportation Potentials on Round Spheres
In this paper the regularity of optimal transportation potentials defined on
round spheres is investigated. Specifically, this research generalises the
calculations done by Loeper, where he showed that the strong (A3) condition of
Trudinger and Wang is satisfied on the round sphere, when the cost-function is
the geodesic distance squared. In order to generalise Loeper's calculation to a
broader class of cost-functions, the (A3) condition is reformulated via a
stereographic projection that maps charts of the sphere into Euclidean space.
This reformulation subsequently allows one to verify the (A3) condition for any
case where the cost-fuction of the associated optimal transportation problem
can be expressed as a function of the geodesic distance between points on a
round sphere. With this, several examples of such cost-functions are then
analysed to see whether or not they satisfy this (A3) condition.Comment: 24 pages, 4 figure
Curved Noncommutative Tori as Leibniz Quantum Compact Metric Spaces
We prove that curved noncommutative tori, introduced by Dabrowski and Sitarz,
are Leibniz quantum compact metric spaces and that they form a continuous
family over the group of invertible matrices with entries in the commutant of
the quantum tori in the regular representation, when this group is endowed with
a natural length function.Comment: 16 Pages, v3: accepted in Journal of Math. Physic
Kinetic and ion pairing contributions in the dielectric spectra of electrolyte aqueous solutions
Understanding dielectric spectra can reveal important information about the
dynamics of solvents and solutes from the dipolar relaxation times down to
electronic ones. In the late 1970s, Hubbard and Onsager predicted that adding
salt ions to a polar solution would result in a reduced dielectric permittivity
that arises from the unexpected tendency of solvent dipoles to align opposite
to the applied field. So far, this effect has escaped an experimental
verification, mainly because of the concomitant appearance of dielectric
saturation from which the Hubbard-Onsager decrement cannot be easily separated.
Here we develop a novel non-equilibrium molecular dynamics simulation approach
to determine this decrement accurately for the first time. Using a
thermodynamic consistent all-atom force field we show that for an aqueous
solution containing sodium chloride around 4.8 Mol/l, this effect accounts for
12\% of the total dielectric permittivity. The dielectric decrement can be
strikingly different if a less accurate force field for the ions is used. Using
the widespread GROMOS parameters, we observe in fact an {\it increment} of the
dielectric permittivity rather than a decrement. We can show that this
increment is caused by ion pairing, introduced by a too low dispersion force,
and clarify the microscopic connection between long-living ion pairs and the
appearance of specific features in the dielectric spectrum of the solution
Optimal Energy Dissipation in Sliding Friction Simulations
Non-equilibrium molecular dynamics simulations, of crucial importance in
sliding friction, are hampered by arbitrariness and uncertainties in the
removal of the frictionally generated Joule heat. Building upon general
pre-existing formulation, we implement a fully microscopic dissipation approach
which, based on a parameter-free, non-Markovian, stochastic dynamics, absorbs
Joule heat equivalently to a semi-infinite solid and harmonic substrate. As a
test case, we investigate the stick-slip friction of a slider over a
two-dimensional Lennard-Jones solid, comparing our virtually exact frictional
results with approximate ones from commonly adopted dissipation schemes.
Remarkably, the exact results can be closely reproduced by a standard Langevin
dissipation scheme, once its parameters are determined according to a general
and self-standing variational procedure
Suspensions of supracolloidal magnetic polymers: self-assembly properties from computer simulations
We study self-assembly in suspensions of supracolloidal polymer-like
structures made of crosslinked magnetic particles. Inspired by self-assembly
motifs observed for dipolar hard spheres, we focus on four different topologies
of the polymer-like structures: linear chains, rings, Y-shaped and X-shaped
polymers. We show how the presence of the crosslinkers, the number of beads in
the polymer and the magnetic interparticle interaction affect the structure of
the suspension. It turns out that for the same set of parameters, the rings are
the least active in assembling larger structures, whereas the system of Y- and
especially X-like magnetic polymers tend to form very large loose aggregates
Temperature control in molecular dynamic simulations of non-equilibrium processes
Thermostats are often used in various condensed matter problems, e.g. when a biological molecule undergoes a transformation in a solution, a crystal surface is irradiated with energetic particles, a crack propagates in a solid upon applied stress, two surfaces slide with respect to each other, an excited local phonon dissipates its energy into a crystal bulk, and so on. In all of
these problems, as well as in many others, there is an energy transfer between different local parts of the entire system kept at a constant temperature. Very often, when modelling such processes using molecular dynamics simulations, thermostatting is done using strictly
equilibrium approaches serving to describe the NV T ensemble. In this paper we critically discuss the applicability of such approaches to non-equilibrium problems, including those mentioned above, and stress that the correct temperature control can only be achieved if the
method is based on the generalized Langevin equation (GLE). Specifically, we emphasize that a meaningful compromise between computational efficiency and a physically appropriate implementation of the NV T thermostat can be achieved, at least for solid state and surface
problems, if the so-called stochastic boundary conditions (SBC), recently derived from the GLE (Kantorovich and Rompotis 2008 Phys. Rev. B 78 094305), are used. For SBC, the Langevin thermostat is only applied to the outer part of the simulated fragment of the entire system which
borders the surrounding environment (not considered explicitly) serving as a heat bath. This point is illustrated by comparing the performance of the SBC and some of the equilibrium thermostats in two problems: (i) irradiation of the Si(001) surface with an energetic CaF2
molecule using an ab initio density functional theory based method, and (ii) the tribology of two amorphous SiO2 surfaces coated with self-assembled monolayers of methyl-terminated hydrocarbon alkoxylsilane molecules using a classical atomistic force field. We discuss the
differences in behaviour of these systems due to applied thermostatting, and show that in some cases a qualitatively different physical behaviour of the simulated system can be obtained if an equilibrium thermostat is used
Managing the supercell approximation for charged defects in semiconductors: finite size scaling, charge correction factors, the bandgap problem and the ab initio dielectric constant
The errors arising in ab initio density functional theory studies of
semiconductor point defects using the supercell approximation are analyzed. It
is demonstrated that a) the leading finite size errors are inverse linear and
inverse cubic in the supercell size, and b) finite size scaling over a series
of supercells gives reliable isolated charged defect formation energies to
around +-0.05 eV. The scaled results are used to test three correction methods.
The Makov-Payne method is insufficient, but combined with the scaling
parameters yields an ab initio dielectric constant of 11.6+-4.1 for InP. Gamma
point corrections for defect level dispersion are completely incorrect, even
for shallow levels, but re-aligning the total potential in real-space between
defect and bulk cells actually corrects the electrostatic defect-defect
interaction errors as well. Isolated defect energies to +-0.1 eV are then
obtained using a 64 atom supercell, though this does not improve for larger
cells. Finally, finite size scaling of known dopant levels shows how to treat
the band gap problem: in less than about 200 atom supercells with no
corrections, continuing to consider levels into the theoretical conduction band
(extended gap) comes closest to experiment. However, for larger cells or when
supercell approximation errors are removed, a scissors scheme stretching the
theoretical band gap onto the experimental one is in fact correct.Comment: 11 pages, 3 figures (6 figure files). Accepted for Phys Rev
- …
