259 research outputs found

    Penetrating radiation system for detecting the amount of liquid in a tank Patent

    Get PDF
    Radiation source and detection system for measuring amount of liquid inside tanks independently of liquid configuratio

    Augmented RIGS

    Get PDF
    The results of the Phase 2 Resonant Infrasonic Gauging System (RIGS) development program are presented. The program consisted of design, fabrication, and testing of an "augmented" RIGS concept. The RIGS is a gauging system capable of measuring propellant quantities in zero-g as well as under accelerated conditions. Except for hydrogen, it can be used to gauge virtually any propellant in liquid form, including cryogenics. The gage consists of a sensor unit which is attached to the propellant tank and an electronic control unit which may be positioned separately from the sensor. The control unit receives signals from the sensor as well as the propellant temperature measurement and the ullage gas pressure, and computes the propellant quantity in the tank

    RTG/science instrument radiation interactions for deep space probes, phase 2, 3, and 4

    Get PDF
    Assessment of interference to scientific instruments onboard RTG powered spacecraft caused by radiation emanating from RTG unit with application to Pioneer F/G space probe

    Technical Report Replacement of Vertebrates by Locust in Student Laboratory Exercises

    Get PDF
    The student laboratory exercises are a very important part in the curriculum of physiology, neurophysiology  and biophysics. Knowledge from lectures and books should be supported with some practical experience  based on work with live subjects. But this raises a very important question – is the use of animals for  teaching purposes acceptable? This is a controversial question for a long time in physiology teaching and  has numerous arguments for and against. With respect to efficiency and quality of teaching it is essential.  However, is this enough to justify the use of animals? Traditionally laboratory exercises are performed on frogs or rodents. Despites obvious advantages this has  serious disadvantages, namely relatively high costs related to animal facility and care of the animals. Applying  the 3R‘s principle, we replaced vertebrates by invertebrates and introduced laboratory exercises based  on recording of action potentials from wing stretch receptors of the locust (Robertson, 1992). Locusts are  cheap to buy (approx. 2 locust for 1 euro) and easy to care for. Preparation of locusts for experiment is very  simple. However, in this laboratory exercise students can learn such basic concepts like generation of action  potential, natural variability of recorded signals in a live system, adaptation and principles of coding in the  nervous system. Apart from this, modification of the experimental setup enabled us to investigate physiological  concepts like neural coding in more natural conditions.

    The cryogenic system for the SLAC E158 experiment

    Get PDF
    E158 is a fixed target experiment at SLAC in which high energy (up to 48 GeV) polarized electrons are scattered off the unpolarized electrons in a 1.5 m long liquid hydrogen target. The total volume of liquid hydrogen in the system is 47.1. The beam can deposit as much as 700 W into the liquid hydrogen. Among the requirements for the system are: that density fluctuations in the liquid hydrogen be kept to a minimum, that the target can be moved out of the beam line while cold and replaced to within 2 mm and that the target survive lifetime radiation doses of up to 1×106 Gy. The cryogenic system for the experiment consists of the target itself, the cryostat containing the target, a refurbished CTI 4000 refrigerator providing more than 1 kW of cooling at 20 K and associated transfer lines and valve boxes. This paper discusses the requirements, design, construction, testing and operation of the cryogenic system. The unique features of the design associated with hydrogen safety and the high radiation field in which the target resides are also covered

    Liquid Hydrogen Target Experience at SLAC

    Get PDF
    Liquid hydrogen targets have played a vital role in the physics program at SLAC for the past 40 years. These targets have ranged from small "beer can" targets to the 1.5 m long E158 target that was capable of absorbing up to 800 W without any significant density changes. Successful use of these targets has required the development of thin-wall designs, liquid hydrogen pumps, remote positioning and alignment systems, safety systems, control and data acquisition systems, cryogenic cooling circuits and heat exchangers. Detailed operating procedures have been created to ensure safety and operational reliability.This paper surveys the evolution of liquid hydrogen targets at SLAC and discusses advances in several of the enabling technologies that made these targets possible

    AntRS: Recommending Lists through a Multi-Objective Ant Colony System

    Get PDF
    International audienceWhen people use recommender systems, they generally expect coherent lists of items. Depending on the application domain, it can be a playlist of songs they are likely to enjoy in their favorite online music service, a set of educational resources to acquire new competencies through an intelligent tutoring system, or a sequence of exhibits to discover from an adaptive mobile museum guide. To make these lists coherent from the users' perspective, recommendations must find the best compromise between multiple objectives (best possible precision, need for diversity and novelty). We propose to achieve that goal through a multi-agent recommender system, called AntRS. We evaluated our approach with a music dataset with about 500 users and more than 13,000 sessions. The experiments show that we obtain good results as regards to precision, novelty and coverage in comparison with typical state-of-the-art single and multi-objective algorithms

    Alleviating the new user problem in collaborative filtering by exploiting personality information

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11257-016-9172-zThe new user problem in recommender systems is still challenging, and there is not yet a unique solution that can be applied in any domain or situation. In this paper we analyze viable solutions to the new user problem in collaborative filtering (CF) that are based on the exploitation of user personality information: (a) personality-based CF, which directly improves the recommendation prediction model by incorporating user personality information, (b) personality-based active learning, which utilizes personality information for identifying additional useful preference data in the target recommendation domain to be elicited from the user, and (c) personality-based cross-domain recommendation, which exploits personality information to better use user preference data from auxiliary domains which can be used to compensate the lack of user preference data in the target domain. We benchmark the effectiveness of these methods on large datasets that span several domains, namely movies, music and books. Our results show that personality-aware methods achieve performance improvements that range from 6 to 94 % for users completely new to the system, while increasing the novelty of the recommended items by 3-40 % with respect to the non-personalized popularity baseline. We also discuss the limitations of our approach and the situations in which the proposed methods can be better applied, hence providing guidelines for researchers and practitioners in the field.This work was supported by the Spanish Ministry of Economy and Competitiveness (TIN2013-47090-C3). We thank Michal Kosinski and David Stillwell for their attention regarding the dataset
    corecore