125 research outputs found
Hierarchy of general invariants for bivariate LPDOs
We study invariants under gauge transformations of linear partial
differential operators on two variables. Using results of BK-factorization, we
construct hierarchy of general invariants for operators of an arbitrary order.
Properties of general invariants are studied and some examples are presented.
We also show that classical Laplace invariants correspond to some particular
cases of general invariants.Comment: to appear in J. "Theor.Math.Phys." in May 200
Revisit Sparse Polynomial Interpolation based on Randomized Kronecker Substitution
In this paper, a new reduction based interpolation algorithm for black-box
multivariate polynomials over finite fields is given. The method is based on
two main ingredients. A new Monte Carlo method is given to reduce black-box
multivariate polynomial interpolation to black-box univariate polynomial
interpolation over any ring. The reduction algorithm leads to multivariate
interpolation algorithms with better or the same complexities most cases when
combining with various univariate interpolation algorithms. We also propose a
modified univariate Ben-or and Tiwarri algorithm over the finite field, which
has better total complexity than the Lagrange interpolation algorithm.
Combining our reduction method and the modified univariate Ben-or and Tiwarri
algorithm, we give a Monte Carlo multivariate interpolation algorithm, which
has better total complexity in most cases for sparse interpolation of black-box
polynomial over finite fields
Gradual sub-lattice reduction and a new complexity for factoring polynomials
We present a lattice algorithm specifically designed for some classical
applications of lattice reduction. The applications are for lattice bases with
a generalized knapsack-type structure, where the target vectors are boundably
short. For such applications, the complexity of the algorithm improves
traditional lattice reduction by replacing some dependence on the bit-length of
the input vectors by some dependence on the bound for the output vectors. If
the bit-length of the target vectors is unrelated to the bit-length of the
input, then our algorithm is only linear in the bit-length of the input
entries, which is an improvement over the quadratic complexity floating-point
LLL algorithms. To illustrate the usefulness of this algorithm we show that a
direct application to factoring univariate polynomials over the integers leads
to the first complexity bound improvement since 1984. A second application is
algebraic number reconstruction, where a new complexity bound is obtained as
well
A kilobit hidden SNFS discrete logarithm computation
We perform a special number field sieve discrete logarithm computation in a
1024-bit prime field. To our knowledge, this is the first kilobit-sized
discrete logarithm computation ever reported for prime fields. This computation
took a little over two months of calendar time on an academic cluster using the
open-source CADO-NFS software. Our chosen prime looks random, and
has a 160-bit prime factor, in line with recommended parameters for the Digital
Signature Algorithm. However, our p has been trapdoored in such a way that the
special number field sieve can be used to compute discrete logarithms in
, yet detecting that p has this trapdoor seems out of reach.
Twenty-five years ago, there was considerable controversy around the
possibility of back-doored parameters for DSA. Our computations show that
trapdoored primes are entirely feasible with current computing technology. We
also describe special number field sieve discrete log computations carried out
for multiple weak primes found in use in the wild. As can be expected from a
trapdoor mechanism which we say is hard to detect, our research did not reveal
any trapdoored prime in wide use. The only way for a user to defend against a
hypothetical trapdoor of this kind is to require verifiably random primes
Finding polynomial loop invariants for probabilistic programs
Quantitative loop invariants are an essential element in the verification of
probabilistic programs. Recently, multivariate Lagrange interpolation has been
applied to synthesizing polynomial invariants. In this paper, we propose an
alternative approach. First, we fix a polynomial template as a candidate of a
loop invariant. Using Stengle's Positivstellensatz and a transformation to a
sum-of-squares problem, we find sufficient conditions on the coefficients.
Then, we solve a semidefinite programming feasibility problem to synthesize the
loop invariants. If the semidefinite program is unfeasible, we backtrack after
increasing the degree of the template. Our approach is semi-complete in the
sense that it will always lead us to a feasible solution if one exists and
numerical errors are small. Experimental results show the efficiency of our
approach.Comment: accompanies an ATVA 2017 submissio
Certification of Bounds of Non-linear Functions: the Templates Method
The aim of this work is to certify lower bounds for real-valued multivariate
functions, defined by semialgebraic or transcendental expressions. The
certificate must be, eventually, formally provable in a proof system such as
Coq. The application range for such a tool is widespread; for instance Hales'
proof of Kepler's conjecture yields thousands of inequalities. We introduce an
approximation algorithm, which combines ideas of the max-plus basis method (in
optimal control) and of the linear templates method developed by Manna et al.
(in static analysis). This algorithm consists in bounding some of the
constituents of the function by suprema of quadratic forms with a well chosen
curvature. This leads to semialgebraic optimization problems, solved by
sum-of-squares relaxations. Templates limit the blow up of these relaxations at
the price of coarsening the approximation. We illustrate the efficiency of our
framework with various examples from the literature and discuss the interfacing
with Coq.Comment: 16 pages, 3 figures, 2 table
On the Generation of Positivstellensatz Witnesses in Degenerate Cases
One can reduce the problem of proving that a polynomial is nonnegative, or
more generally of proving that a system of polynomial inequalities has no
solutions, to finding polynomials that are sums of squares of polynomials and
satisfy some linear equality (Positivstellensatz). This produces a witness for
the desired property, from which it is reasonably easy to obtain a formal proof
of the property suitable for a proof assistant such as Coq. The problem of
finding a witness reduces to a feasibility problem in semidefinite programming,
for which there exist numerical solvers. Unfortunately, this problem is in
general not strictly feasible, meaning the solution can be a convex set with
empty interior, in which case the numerical optimization method fails.
Previously published methods thus assumed strict feasibility; we propose a
workaround for this difficulty. We implemented our method and illustrate its
use with examples, including extractions of proofs to Coq.Comment: To appear in ITP 201
Fast construction of irreducible polynomials over finite fields
International audienceWe present a randomized algorithm that on input a finite field with elements and a positive integer outputs a degree irreducible polynomial in . The running time is elementary operations. The in is a function of that tends to zero when tends to infinity. And the in is a function of that tends to zero when tends to infinity. In particular, the complexity is quasi-linear in the degree
Discrete Logarithm in GF(2809) with FFS
International audienceThe year 2013 has seen several major complexity advances for the discrete logarithm problem in multiplicative groups of small- characteristic finite fields. These outmatch, asymptotically, the Function Field Sieve (FFS) approach, which was so far the most efficient algorithm known for this task. Yet, on the practical side, it is not clear whether the new algorithms are uniformly better than FFS. This article presents the state of the art with regard to the FFS algorithm, and reports data from a record-sized discrete logarithm computation in a prime-degree extension field
Improving the Berlekamp Algorithm for Binomials x n − a
In this paper, we describe an improvement of the Berlekamp algorithm, a method for factoring univariate polynomials over finite fields, for binomials xn −a over finite fields Fq. More precisely, we give a deterministic algorithm for solving the equation h(x)q≡h(x) (mod xn−a) directly without applying the sweeping-out method to the corresponding coefficient matrix. We show that the factorization of binomials using the proposed method is performed in O˜, (n log q) operations in Fq if we apply a probabilistic version of the Berlekamp algorithm after the first step in which we propose an improvement. Our method is asymptotically faster than known methods in certain areas of q, n and as fast as them in other areas
- …