
Improving the Berlekamp algorithm for
binomials xn − a

Ryuichi Harasawa, Yutaka Sueyoshi, and Aichi Kudo

Graduate School of Engineering, Nagasaki University,
1-14 Bunkyomachi, Nagasaki-shi, Nagasaki, 852-8521, Japan
{harasawa,sueyoshi,kudo}@cis.nagasaki-u.ac.jp

Abstract. In this paper, we describe an improvement of the Berlekamp
algorithm, a method for factoring univariate polynomials over finite fields,
for binomials xn−a over finite fields Fq. More precisely, we give a deter-
ministic algorithm for solving the equation h(x)q ≡ h(x) (mod xn − a)
directly without applying the sweeping-out method to the corresponding
coefficient matrix. We show that the factorization of binomials using the
proposed method is performed in O (̃n log q) operations in Fq if we apply
a probabilistic version of the Berlekamp algorithm after the first step in
which we propose an improvement. Our method is asymptotically faster
than known methods in certain areas of q, n and as fast as them in other
areas.

Keywords: finite field, polynomial factorization, Berlekamp algorithm,
binomial

1 Introduction

The factorization of univariate polynomials over finite fields is one of the
interesting topics in computer algebra, for example, it is used to determine
the decomposition of prime numbers in number fields and to construct
(non-prime) finite fields and so on.

Applying the formal derivation, we can reduce the factorization of
polynomials over finite fields to that of square-free polynomials (i.e.,
polynomials having no multiple factors) [10, 11]. For the factorization of
square-free polynomials over finite fields, the Berlekamp algorithm is well
known [4, 10].

In this paper, we propose an improvement of the Berlekamp algorithm
for binomials xn − a over finite fields Fq. More precisely, we give a deter-
ministic algorithm for solving the equation h(x)q ≡ h(x) (mod xn − a)
directly without applying the sweeping-out method to the correspond-
ing coefficient matrix, which is a generarization of the Prange method for
xn−1 [16]. We show that the factorization of binomials using the proposed

2 Ryuichi Harasawa, Yutaka Sueyoshi, and Aichi Kudo

method is performed in O (̃n log q) operations in Fq if we apply a prob-
abilistic version of the Berlekamp algorithm after the first step in which
we propose an improvement. Our method is asymptotically faster than
known methods (for example the Berlekamp method [4], the Gathen and
Shoup method [9], and the Kaltofen and Shoup method [13], the Cantor
and Zassenhaus method [6], [10, Figure 14.9]) in certain areas of q, n and
as fast as them in other areas (Fig. 1). We mention that both the Gathen
and Shoup method [9] and the Kaltofen and Shoup method [13] improve
the distinct-degree factorization in the Cantor and Zassenhaus method,
by using the ”iterated Frobenius” method for the former and using fast
matrix multiplication for the latter.

11.522.533.544.5

0 0.5 1 1.5 2 2.5yvaluewith
therunning
timeO~(ny)

x value with log2 q = nx
y = x+ 1y = 2:376y = 2y = 0:416x+ 1:806
y = x+ 2proposed methodBerlekamp [4℄Gathen-Shoup [9℄Kaltofen-Shoup [13℄Cantor-Zassenhaus [6℄

Fig. 1. Running times of some factoring algorithms

Note that there exist some efficient methods for computing the solu-
tion of xn = a over finite fields (e.g., [1, 21]).

The remainder of this paper is organized as follows: In section 2,
we introduce some theoretical results on binomials over finite fields. In

Improving the Berlekamp algorithm for binomials xn − a 3

Section 3, we describe the Berlekamp algorithm. In Section 4, we propose
an improvement of the Berlekamp algorithm for binomials xn − a. In
section 5, we estimate the complexity of the proposed method. In Section
6, we give the conclusion and future works.

2 Binomials

In this section, we introduce some (theoretical) facts on binomials over
finite fields Fq, while we do not apply directly these facts to our proposed
method. However, we use them to make a lot of examples xn − a for
various cases q and n (that is, various patterns of factorizations).

At first, for the irreducibility of binomials, the following result is
known:

Theorem 1 [14, Theorem 3.75]. Let n ≥ 2, a ∈ F∗
q, and let e be the

multiplicative order of a. Then we have

xn − a is irreducible in Fq[x]

⇐⇒
{

(i) for each prime divisor p of n, p|e and p - q−1
e ,

(ii) q ≡ 1 (mod 4) if n ≡ 0 (mod 4).

We next describe a result on the number of irreducible factors of
binomials. Let µ(·) denote the Möbius function, that is,

µ(x) =


1 (x = 1),
0 (x is not square-free),

(−1)s (x is the product of s distinct primes).

For a binomial xn − a over Fq, we denote by δi the number of roots of it
in Fqi . If we put di = gcd(qi − 1, n), then we easily see that

δi =
{
di (a(qi−1)/di = 1),
0 (otherwise).

We get a result on the number of irreducible factors of xn − a as
follows:

Theorem 2 [19]. With the notation as above, we assume char Fq - n and
a ̸= 0. Let σt be the number of irreducible factors of degree t of xn − a.
Then we have

σt =
1
t

∑
i|t

µ
(t
i

)
δi.

4 Ryuichi Harasawa, Yutaka Sueyoshi, and Aichi Kudo

Proof. We easily see that
δt =

∑
i|t

iσi.

Applying Möbius’s inversion formula, we have

tσt =
∑
i|t

µ
(t
i

)
δi,

which implies the assertion of the theorem. ⊓⊔

Remark 1. This theorem implies that, for given q and n with char Fq - n,
the values σt’s depend only on the multiplicative order of a.

In the rest of this section, we describe a result on the minimal degree
(resp. the maximal degree) of irreducible factors of binomials.

Proposition 1. With the notation as above, we assume char Fq - n and
a ̸= 0. Let κ = min{i | δi ̸= 0}, that is, the extension field Fqκ is the
minimal field that contains some root of xn−a. Let ζn be a primitive n-th
root of unity, and λ = [Fq(ζn) : Fq] (in other words, the value λ is equal
to the order of q in (Z/nZ)∗). Then we have

1. the minimal degree of irreducible factors of xn − a is equal to κ,
2. the maximal degree of irreducible factors of xn−a is equal to lcm(κ, λ).

Proof. It is obvious for the minimal degree.
For the maximal degree, let e be the multiplicative order of a and ζen

a primitive en-th root of unity. Then there exists an element b in Fq with
multiplicative order e such that ζen is a root of xn−b. Indeed, since ζen is
a root of xen − 1 and xen − 1 =

∏
0≤i<e(x

n − ai), there exists j such that
ζen is a root of xn−aj . Setting b = aj , we see that the multiplicative order
of b is equal to e (equivalently gcd(j, e) = 1), because ζen is a primitive
en-th root of unity. We further see, from Theorem 2 (or Remark 1), that
the pattern of the factorization of xn − a coincides with that of xn − b.
Namely, for each i ≥ 1, the number of irreducible factors of degree i of
xn − a is equal to that of xn − b. Therefore it is sufficient to show our
assertion for xn − b.

Let u be a root in Fqκ of xn−b. We see that uζi
n (0 ≤ i ≤ n−1) are the

roots of xn−b, which implies that the splitting field of xn− b over Fq, say
K, becomes K = Fq(u, ζn). So the maximal degree of irreducible factors
of xn − b is less than or equal to [K : Fq] = lcm(κ, λ). On the other hand,

Improving the Berlekamp algorithm for binomials xn − a 5

we see that {ζ1+ie
en | 0 ≤ i ≤ n − 1} gives an alternative representation

of the roots of xn − b. Hence we have K = Fq(ζen) by considering the
spliting field for this representation of the root of xn − b, which implies
the degree of minimal polynomial, say ψ(x), of ζen over Fq is equal to
[K : Fq] = lcm(κ, λ). Therefore the maximal degree of irreducible factors
of xn−b is greater than or equal to lcm(κ, λ) because ψ(x) is an irreducible
factor of xn − b. So we get the desired result. ⊓⊔

3 Berlekamp algorithm

In this section, we assume that char Fq > 2 for simplicity. The Berlekamp
algorithm [4, 10] is a well-known algorithm for factoring square-free poly-
nomials over finite fields. In Table 1, we describe its procedure 1. From
Step 3, we see this algorithm is probabilistic, which runs in polynomial
time for the input size O(n log q) with n the degree of polynomial to be
factored (Fig. 1). We note that there exists a deterministic procedure for
Step 3, but the complexity is not the polynomial time for the input size
[3]. So we use a probabilistic version of the Berlekamp method in this
paper.

In the next section, we focus on Step 1 in Table 1. More precisely, we
consider the equation

h(x)q ≡ h(x) (mod f(x)) (1)

for a square-free polynomial f(x) over Fq, i.e., the eigenspace V of the
eigenvalue 1 for the linear transformation h(x) 7→ h(x)q (mod f(x)) on
the n-dimensional vector space Fq[x]/(f(x)) over Fq.

Let k denote the number of irreducible factors of f(x) and f(x) =∏
1≤i≤k fi(x) be the factorization of f(x). Then we see that the vector

space Fq[x]/(f(x)) is isomorphic to
⊕

1≤i≤k Fq[x]/(fi(x)) and that the
solution space V of the equation (1) is isomorphic to the subspace of⊕

1≤i≤k Fq[x]/(fi(x)) consisting of (a1, · · · , ak) with each ai in Fq. Hence,
the number of irreducible factors of f(x) is equal to the dimension of V
over Fq.

Remark 2. For Step 3 in Table 1, if the polynomial v(x) is not irre-
ducible, then the probability that gcd(g(x), v(x)) or gcd(g(x)

q−1
2 −1, v(x))

(or both) is a proper factor of v(x) is at least 1
2 from the description above.

1 If q = 2m, we perform the same procedure as in charFq > 2 except for Step 3. For
Step 3, we compute gcd(Tr(g(x)), v(x)) with g(x) a random element in V instead of

gcd(g(x)(q−1)/2−1, v(x)), where Tr(g(x)) = g(x)+ g(x)2 + · · ·+ g(x)2
m−1

mod v(x)
[9, Algorithm 3.6 (Step 4)].

6 Ryuichi Harasawa, Yutaka Sueyoshi, and Aichi Kudo

Table 1. Berlekamp algorithm

Input: A square-free polynomial f(x) over Fq.
Output: The factorization of f(x).

Step 1: Compute the polynomials h(x) over Fq

of degree less than deg f(x) such that
h(x)q ≡ h(x) (mod f(x)).
The set V of h(x)’s forms an Fq-vector space.
Let {h1(x), . . . , hk(x)} be a basis of V .

Step 2: F ← {f(x)}.
if k = 1, go to Step 4.

Step 3: while #F < k
Choose a random element g(x) in V
(g(x) is of the form

∑
1≤i≤k λihi(x) with λi ∈ Fq).

For each v(x) ∈ F , do the following procedure:
Compute d(x) = gcd(g(x), v(x)).
if 0 < deg d(x) < deg v(x)

F ← (F \ {v(x)}) ∪ {d(x), v(x)/d(x)}.
if #F = k, go to Step 4.
v(x)← v(x)/d(x).

end if

Compute d(x) = gcd(g(x)(q−1)/2 − 1, v(x)).
if 0 < deg d(x) < deg v(x)

F ← (F \ {v(x)}) ∪ {d(x), v(x)/d(x)}.
if #F = k, go to Step 4.

end if
end while

Step 4: Return F
(the product of the elements in F equals f(x)).

In the remainder of this section, for the solution h(x) to the equation
h(x)q ≡ h(x) (mod f(x)), we mention the method [14, Theorems 4.3 and
4.5] using the Prange method [16] for f(x) = xn − 1.

Let f(x) be a polynomial over Fq with f(0) ̸= 0 and s the least
positive integer satisfying f(x) | xs − 1, which is called the order of f(x).
Applying the Prange method to xs − 1, we then get the solution above
[14, Theorems 4.3 and 4.5]. Namely, for each α ≥ 0, let l be the least
positive integer such that

xαql ≡ xα (mod f(x)),

which is equivalent to

αql ≡ α (mod s).

Improving the Berlekamp algorithm for binomials xn − a 7

Defining
hα(x) = xα + xαq + · · · + xαql−1

,

we see that hα(x)q ≡ hα(x) (mod f(x)). Moreover, the set {hα(x) mod
xs − 1 |α ∈ Z/sZ} forms a basis of the solution space of hα(x)q ≡ hα(x)
(mod xs − 1), which we see in the next section (see Remark 3. Also
[10, p. 419 (Exercise 14.47)] or [16]). If f(x) ̸= xs − 1, then the set
{hα(x) mod f(x) |α ∈ Z/sZ} forms a generator system of the solution
space of hα(x)q ≡ hα(x) (mod f(x)).

Our main assertion in this paper is that we analyze the method above
more strictly and simplify it in the case of binomials f(x) = xn − a. We
emphasize that our method does not need the computation of the value
s, the order of f(x). In the case f(x) = xn−a, the order of f(x) is s = en
with e the multiplicative order of a [14, Lemma 3.17]. So, if we need the
value s, then we need to find the multiplicative order of a, for which
we might compute the factorization of q − 1. However the task becomes
extremely heavy as q becomes large.

4 Our algorithm

In this section, we propose an improved method for obtaining a basis of
V in Step 1 of Table 1 for xn − a. Namely, we solve

h(x)q ≡ h(x) (mod xn − a) (2)

by a new method. Since xn −a is assumed to be square-free, char Fq does
not divide n.

For f(x) = xn − a, instead of dealing with the coefficient matrix
corresponding to the equation above, we consider the orbits in Z/nZ
according to the action of ⟨q⟩ by multiplication.

For α in Z/nZ = {0, 1, . . . , n − 1}, let l be the least positive integer
such that qlα ≡ α (mod n) and let αi = qiα mod n for 0 ≤ i < l. We
denote the orbit of α by ᾱ = {α0, α1, . . . , αl−1}. In particular, we have
0̄ = {0}.

For each orbit ᾱ, we consider the subspace

Tᾱ = {β0x
α0 + β1x

α1 + · · · + βl−1x
αl−1 mod xn − a | βi ∈ Fq}

of Fq[x]/(xn − a).
Since qαi ≡ αi+1 (mod n) (0 ≤ i < l − 1) and qαl−1 ≡ α0 (mod n),

we put

qαi = cin+ αi+1 (0 ≤ i < l − 1) and qαl−1 = cl−1n+ α0

8 Ryuichi Harasawa, Yutaka Sueyoshi, and Aichi Kudo

with integers ci (0 ≤ i < l). Then we see

(xαi)q ≡ acixαi+1 (mod xn − a) (0 ≤ i < l − 1) and
(xαl−1)q ≡ acl−1xα0 (mod xn − a).

Hence, for hᾱ(x) = β0x
α0 + β1x

α1 + · · · + βl−1x
αl−1 in Tᾱ, we have

hᾱ(x)q ≡ acl−1βl−1x
α0 + ac0β0x

α1 + · · · + acl−2βl−2x
αl−1 (mod xn − a).

Therefore, for the linear transformation πq of Fq[x]/(xn − a) defined
by πq(h(x)) = h(x)q mod xn − a, the subspace Tᾱ is πq-invariant and
Fq[x]/(xn − a) =

⊕
ᾱ Tᾱ. We put Vᾱ = V ∩ Tᾱ, then V =

⊕
ᾱ Vᾱ and

V0̄ = T0̄ ≃ Fq.
If there exist w orbits ᾱ’s in Z/nZ, the equation (2) is divided into w

equations
hᾱ(x)q ≡ hᾱ(x) (mod xn − a) (3)

where h(x) =
∑

ᾱ hᾱ(x) with hᾱ(x) as above. For the orbit 0̄, the constant
polynomial 1 forms a basis of one-dimensional vector space V0̄.

We consider the orbit ᾱ ̸= 0̄. Then the equation (3) is written as
β0 = acl−1βl−1

β1 = ac0β0
...

βl−1 = acl−2βl−2,

which leads to the relation

β0 = ac0+c1+···+cl−1β0.

Therefore, we obtain the solution(s) of (3) as follows:
β(xα0 + ac0xα1 + ac0+c1xα2 + · · · + ac0+c1+···+cl−2xαl−1)

(if ac0+c1+···+cl−1 = 1),
0 (otherwise),

where β runs over all elements of Fq. The solution space Vᾱ of the equation
(3) is {0} if ac0+c1+···+cl−1 ̸= 1 and, otherwise, forms one-dimensional sub-
space of Tᾱ generated by xα0+ac0xα1+ac0+c1xα2+· · ·+ac0+c1+···+cl−2xαl−1 .

We describe the proposed algorithm in Table 2.

Improving the Berlekamp algorithm for binomials xn − a 9

Table 2. Solutions of h(x)q ≡ h(x) (mod xn − a)

Input: A binomial xn − a over Fq with charFq - n.
Output: A basis B of the solution space V of

h(x)q ≡ h(x) (mod xn − a).

Step 1: B ← {1},
G← {1, 2, . . . , n− 1}.

Step 2: if G = ∅, return B.

Step 3: i0 ← min{i | i ∈ G},
G← G \ {i0},
j ← i0,
f ← xj ,
b← 1

Step 4: Compute the integers t, r
such that jq = tn + r with 0 ≤ r < n.
b← b · at.

Step 5: while r ̸= i0
G← G \ {r},
f ← f + b · xr,
j ← r.
Compute the integers t, r
such that jq = tn + r with 0 ≤ r < n.
b← b · at.

end while

Step 6: if b = 1, B ← B ∪ {f}.
goto Step 2.

Remark 3. For i ≥ 1, we see xαqi ≡ ac0+c1+···+ci−1xαi (mod xn − a) by
the definition of αi and ci. This implies that ac0+c1+···+cl−1 = 1 holds if
and only if xαql ≡ xα (mod xn − a), and then

∑
0≤i≤l−1 x

αqi
mod xn − a

is a solution of the equation (3). Especially, in the case of a = 1, the
equation ac0+c1+···+cl−1 = 1 always holds for all α ∈ Z/nZ, which implies
that the set {

∑
0≤i≤l−1 x

αqi
mod xn − 1 |α ∈ Z/nZ} forms an Fq-basis of

the solution space V and that the dimension of V (i.e., the number of the
irreducible factors of xn − 1) is equal to the number of the orbits in Z/nZ
with respect to ⟨q⟩.

As a theoretical consideration about the proposed method, we get the
following result on the congruence equation xαql ≡ xα (mod xn − a) in
Remark 3.

Proposition 2. With the notation as above, we put d = gcd(α, n). Then
we have

10 Ryuichi Harasawa, Yutaka Sueyoshi, and Aichi Kudo

1. #d̄ = #ᾱ(= l).
2. xdql ≡ xd (mod xn − a) ⇐⇒ xαql ≡ xα (mod xn − a).

Proof. From the definition of d, we denote α = sd with gcd(s, n
d) = 1.

For the first assertion, it is sufficient to show that dqi ≡ d (mod n) if
and only if αqi ≡ α (mod n). By multiplying s (resp. s−1 mod n

d) to the
both sides, we obtain the only if part (resp. the if part).

In the same way, we get the second assertion. ⊓⊔

Proposition 2 implies that, for two orbits ᾱ and ᾱ′ with gcd(α, n) =
gcd(α′, n),

∑
0≤i≤l−1 x

αqi
mod xn − a is a solution of the equation (3) if

and only if so is
∑

0≤i≤l−1 x
α′qi

mod xn − a.

5 Complexity

We estimate the complexity of the factorization of binomials using the
proposed procedure described in the previous section (Table 2). Namely,
we describe the complexity not only of the proposed method but also
of the procedures of square-free factorization and of finding irreducible
factors using the basis which is obtained by the proposed method. The
notation O (̃x) means O(x(log x)t) with some positive constant t.

We assume that the multiplication of l-bit integer and m-bit inte-
ger (resp. the division/remainder of l-bit integer by m-bit integer) needs
O(lm) bit operations (resp. O(m(l −m)) bit operations).

We first see that the square-free factorization of binomials xn − a
over Fq of characteristic p is reduced to the computation of i and r such
that n = pir with gcd(p, r) = 1 and the computation of the pi-th root
of a, say a′. Namely, the square-free factorization of xn − a becomes
xn − a = (xr − a′)pi

. The computation of i and r takes at most

O(log p log
n

p
) +O(log p log

n

p2
) + · · · +O(log p log

n

pv
)

= O(v log p log n) (by log
n

pi
≤ log n)

= O(log2 n) (by v log p = log pv ≤ log n)

bit operations, where v := ⌊logp n⌋. For the computation of a′, if we let
q = pm then we get the pi-th root of a by a′ = apη

with η := −i mod m,
from which we see the computation of a′ takes at most

O(log pη) = O(log q) (by 0 ≤ η < m and q = pm)

Improving the Berlekamp algorithm for binomials xn − a 11

operations in Fq.
With the notations q, n and a as before, we assume that the binomial

xn − a to be factored is square-free. In order to perform the proposed
method (Table 2) for Step 1 in Table 1, for each j with 1 ≤ j ≤ n− 1, we
must execute the following computations:

– the computation of the values t, r such that jq = tn+r with 0 ≤ r < n;
– for the value t above, the computaion of b·at with b being a prescribed

element in Fq.

The former computation takes O(log j · log q) + O(log t · log n) bit
operations and the latter one takes O(log t) operations in Fq. By the fact
t ≤ jq

n and Stirling’s formula log(n!) = O(n · log n), we estimate an upper
bound of the complexity of the former task as∑

1≤j≤n−1

{O(log j · log q) +O(log
jq

n
· log n)}

= O(n log n · log q) +O(n log n · log q) (by log
jq

n
≤ log q)

= O(n log n · log q)
= O (̃n log q) bit operations,

and an upper bound of the complexity of the latter task as∑
1≤j≤n−1

O(log
jq

n
)

= O(n log q) operations in Fq (by log
jq

n
≤ log q).

Therefore, the proposed method runs in O (̃n log q) operations in Fq.
We note that, for alternative methods, it takes O(n3) (resp. O(n2.376))

operations in Fq using the original Gaussian elimination (resp. the Gaus-
sian elimination using a fast method for matrix multiplication [8]) and
O (̃n2) operations in Fq using the Kaltofen-Lobo method [12] based on
the Wiedemann method [22], which is known as the fastest method for
solving linear equations.

We additionally perform the final step (Step 3 in Table 1) inO (̃n log q)
operations in Fq on average [10, Theorems 14.11 and 14.32], assuming
that one applies a fast arithmetic in Fq[x]. Namely, for two polynomials
in Fq[x] of degree at most n, the multiplication, the division with remain-
der and the greatest common divisor are performed in O (̃n) operations
in Fq using the fast arithmetic in Fq[x] [2, 7, 17, 18]. We therefore see that

12 Ryuichi Harasawa, Yutaka Sueyoshi, and Aichi Kudo

the factorization of binomials is performed in O (̃n log q) operations in
Fq, which is asymptotically faster than known methods (e.g., [4, 6, 9, 13]
or [10, Figure 14.9]) in certain areas of q, n and as fast as them in other
areas (Fig. 1 in Section 1).

6 Conclusion and future works

In this paper, we described an improvement of the Berlekamp algorithm
for binomials xn − a over finite fields Fq. More precisely, we proposed a
method for solving the equation h(x)q ≡ h(x) (mod xn − a) directly. We
evaluate the complexity as O (̃n log q) operations in Fq. Our method is
asymptotically faster than known methods in certain areas of q, n and as
fast as them in other areas. Our future works include the experimental
consideration, the detailed analysis of other methods (e.g., the Cantor
and Zassenhaus method [6] and its improvements [5, 9, 13, 15, 20]) in the
case of binomials, and the combination of our method with other ones as
above.

Acknowledgments

We are grateful to the referees for giving a lot of useful comments and
suggestions which make this paper more valuable. This work was partially
supported by the Japan Society for the Promotion of Science (JSPS) un-
der the Grant-in-Aid for challenging Exploratory Research No. 24650009.

References

1. L. Adleman, K. Menders and G. Miller, On taking roots in finite fields, Proc. 18th
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 175 – 178,
1977.

2. A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Reading, MA, Addison-Wesley, 1974.

3. E. R. Berlekamp, Factoring polynomials over finite fields, Bell System Technical
Journal, 46, pp. 1853 – 1859, 1967.

4. E. R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp., 24,
pp. 713 – 735, 1970.

5. P. Camion, Improving an algorithm for factoring polynomials over a finite field
and constructing large irreducible polynomials, IEEE Transactions on Information
Theory, 29 (3), pp. 378 – 385, 1983.

6. D. G. Cantor and H. Zassenhaus, A new algorithm for factoring polynomials over
finite fields, Math. Comp., 36, pp. 587 – 592, 1981.

7. D. G. Cantor and E. Kaltofen, On fast multiplication of polynomials over arbitrary
algebras, Acta Inform., 28, pp. 693 – 701, 1991.

Improving the Berlekamp algorithm for binomials xn − a 13

8. D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progres-
sions, J. Symb. Comput., 9, pp. 251 – 280, 1990.

9. J. von zur Gathen and V. Shoup, Computing Frobenius maps and factoring poly-
nomials, Comput. Complexity, 2, pp. 187 – 224, 1992.

10. J. von zur Gathen and J. Gerhard, Modern Computer Algebra (Second Edition),
Cambridge, 2003.

11. K. Geddes, S. Czapor and G. Labahn, Algorithms for Computer Algebra, Kluwer
Academic Publishers, 1992.

12. E. Kaltofen and A. Lobo, Factoring high-degree polynomials by black box Berlekamp
algorithm, Proceedings of ISSAC’94, pp. 90 – 98, ACM Press, 1994.

13. E. Kaltofen and V. Shoup, Subquadratic-time factoring of polynomials over finite
fields, Math. Comp., 67, pp. 1179 – 1197, 1998

14. R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983.
15. R. J. McEliece, Factorization of polynomials over finite fields, Math. Comp., 23,

pp. 861 – 867, 1969.
16. E. Prange, An algorithm for factoring Xn− 1 over a finite field, Technical Report

AFCRC-TN-59-775, Air Force Cambridge Research Center, Bedford MA, 1956.
17. A. Schönhage and V. Strassen, Schnelle Multiplikation großer Zahlen, Computing,

7, pp. 281 – 292, 1971.
18. A. Schönhage, Schnelle Multiplikation von Polynomen über Körpern der Charak-

teristik 2, Acta Inform., 7, pp. 395 – 398, 1977.
19. Š. Schwarz, On the reducibility of binomial congruences and on the bound of the

least integer belonging to given exponent mod p, Časopis pro pěstováńı matematiky,
74, pp. 1 – 16, 1949. Available at http://dml.cz/dmlcz/109143.

20. V. Shoup, On the deterministic complexity of factoring polynomials over finite
fields, Information Processing Letters, 33, pp. 261 – 267, 1990.

21. T. W. Sze, On solving univariate polynomial equations over fi-
nite fields and some related problem, preprint, available at
http://people.apache.org/ szetszwo/umd/papers/poly.pdf.

22. D. H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans-
actions on Information Theory, 32, pp. 54 – 62, 1986.

