15 research outputs found

    A 2D hydrodynamic-sedimentological model for gravel-bed rivers. Part I: theory and validation

    Get PDF
    This paper presents a novel 2D-depth average model especially developed for gravel-bed rivers, named Lican-Leufú (Lican=pebble and Leufu=river, in Mapuche’s language, the native inhabitants of Central Patagonia, Argentina). The model consists of three components: a hydrodynamic, a sedimentological, and a morphological model. The flow of water is described by the depth-averaged Reynolds equations for unsteady, free-surface, shallow water flows. It includes the standard k-e model for turbulence closure. Sediment transport can be divided in different size classes (sand-gravel mixture) and the equilibrium approach is used for Exner’s equation. The amour layer is also included in the structure of the model and the surface grain size distribution is also allowed to evolve. The model simulates bank slides that enable channel widening. Models predictions were tested against a flume experiment where a static armour layer was developed under conditions of sediment starvations and general good agreements were found: the model predicted adequately the sediment transport, grain size of transported material, final armour grain size distribution and bed elevation

    A 2D hydrodynamic-sedimentological model for gravel bed rivers. Part II, Case study: the Brenta River in Italy

    Get PDF
    A 2D depth average model has been used to simulate water and sediment flow in the Brenta River so as to interpret channel changes and to assess model predictive capabilities. The Brenta River is a gravel bed river located in Northern Italy. The study reach is 1400 long and has a mean slope of 0.0056. High resolution digital terrain models has been produced combining laser imaging detection and ranging data with colour bathymetry techniques. Extensive field sedimentological surveys have been also carried out for surface and subsurface material. The data were loaded in the model and the passage of a high intense flood (R.I. > 9 years) was simulated. The model was run under the hypothesis of a substantial equilibrium between sediment input and transport capacity. In this way, the model results were considered as a reference condition, and the potential trend of the reach was assessed. Low-frequency floods (R.I. » 1.5 years) are expected to produce negligible changes in the channel while high floods may focalize erosion on banks instead than on channel bed. Furthermore, the model predicts well the location of erosion and siltation areas and the results promote its application to other reaches of the Brenta River in order to assess their stability and medium-term evolution

    Optical properties of stochastic subwavelength surface structures

    No full text
    High transparent thermoplastics have the capability to put glass out of business, especially in everyday life's optics. Their diverse nature gives rise to different antireflection principles. The reduction of surface reflection losses in polymethylmethacrylate (PMMA) is demonstrated by means of argon/oxygen plasma treatment. Since the presented reduction of reflection occurs in a wide spectral range, the technique may be applied for omnidirectional devices or curved substrates. The etching process creates a self-organized stochastic subwavelength structure at the substrate itself. The decrease in reflection is described by effective medium theory (EMT), converting the surface topology into a depth-dependent filling factor profile. In a second step this nano-scaled structure is used as the initial point for a broadband absorber by coating it with a nontransparent metal layer. A high-efficient absorber can be obtained, if the metal acts as backside coating of the double-sided plasma-treated substrate and steady-going transitions between the materials eliminating the Fresnel reflections. In practice, the magnitude of absorption depends on depth of structure as well as on the complex refractive index of the metal

    A new approach to define surface/sub-surface transition in gravel beds

    Get PDF
    The vertical structure of river beds varies temporally and spatially in response to hydraulic regime, sediment mobility, grain size distribution and faunal interaction. Implicit are changes to the active layer depth and bed porosity, both critical in describing processes such as armour layer development, surface-subsurface exchange processes and siltation/ sealing. Whilst measurements of the bed surface are increasingly informed by quantitative and spatial measurement techniques (e.g., laser displacement scanning), material opacity has precluded the full 3D bed structure analysis required to accurately define the surface-subsurface transition. To overcome this problem, this paper provides magnetic resonance imaging (MRI) data of vertical bed porosity profiles. Uniform and bimodal (σ g = 2.1) sand-gravel beds are considered following restructuring under sub-threshold flow durations of 60 and 960 minutes. MRI data are compared to traditional 2.5D laser displacement scans and six robust definitions of the surface-subsurface transition are provided; these form the focus of discussion
    corecore