461 research outputs found
Shear bands in granular flow through a mixing length model
We discuss the advantages and results of using a mixing-length, compressible
model to account for shear banding behaviour in granular flow. We formulate a
general approach based on two function of the solid fraction to be determined.
Studying the vertical chute flow, we show that shear band thickness is always
independent from flowrate in the quasistatic limit, for Coulomb wall boundary
conditions. The effect of bin width is addressed using the functions developed
by Pouliquen and coworkers, predicting a linear dependence of shear band
thickness by channel width, while literature reports contrasting data. We also
discuss the influence of wall roughness on shear bands. Through a Coulomb wall
friction criterion we show that our model correctly predicts the effect of
increasing wall roughness on the thickness of shear bands. Then a simple
mixing-length approach to steady granular flows can be useful and
representative of a number of original features of granular flow.Comment: submitted to EP
Large droplet impact on water layers
The impact of large droplets onto an otherwise undisturbed layer of water is considered. The work, which is motivated primarily with regard to aircraft icing, is to try and help understand the role of splashing on the formation of ice on a wing, in particular for large droplets where splash appears, to have a significant effect. Analytical and numerical approaches are used to investigate a single droplet impact onto a water layer. The flow for small times after impact is determined analytically, for both direct and oblique impacts. The impact is also examined numerically using the volume of fluid (VOF) method. At small times there are promising comparisons between the numerical results, the analytical solution and experimental work capturing the ejector sheet. At larger times there is qualitative agreement with experiments and related simulations. Various cases are considered, varying the droplet size to layer depth ratio, including surface roughness, droplet distortion and air effects. The amount of fluid splashed by such an impact is examined and is found to increase with droplet size and to be significantly influenced by surface roughness. The makeup of the splash is also considered, tracking the incoming fluid, and the splash is found to consist mostly of fluid originating in the layer
Cavitation induced by explosion in a model of ideal fluid
We discuss the problem of an explosion in the cubic-quintic superfluid model,
in relation to some experimental observations. We show numerically that an
explosion in such a model might induce a cavitation bubble for large enough
energy. This gives a consistent view for rebound bubbles in superfluid and we
indentify the loss of energy between the successive rebounds as radiated waves.
We compute self-similar solution of the explosion for the early stage, when no
bubbles have been nucleated. The solution also gives the wave number of the
excitations emitted through the shock wave.Comment: 21 pages,13 figures, other comment
Coexisting ordinary elasticity and superfluidity in a model of defect-free supersolid
We present the mechanics of a model of supersolid in the frame of the
Gross-Pitaevskii equation at that do not require defects nor vacancies.
A set of coupled nonlinear partial differential equations plus boundary
conditions is derived. The mechanical equilibrium is studied under external
constrains as steady rotation or external stress. Our model displays a
paradoxical behavior: the existence of a non classical rotational inertia
fraction in the limit of small rotation speed and no superflow under small (but
finite) stress nor external force. The only matter flow for finite stress is
due to plasticity.Comment: 6 pages, 2 figure
Linear response of vibrated granular systems to sudden changes in the vibration intensity
The short-term memory effects recently observed in vibration-induced
compaction of granular materials are studied. It is shown that they can be
explained by means of quite plausible hypothesis about the mesoscopic
description of the evolution of the system. The existence of a critical time
separating regimes of ``anomalous'' and ``normal'' responses is predicted. A
simple model fitting into the general framework is analyzed in the detail. The
relationship between this work and previous studies is discussed.Comment: 10 pages, 6 figures; fixed errata, updtated reference
Creep motion in a granular pile exhibiting steady surface flow
We investigate experimentally granular piles exhibiting steady surface flow.
Below the surface flow, it has been believed exisitence of a `frozen' bulk
region, but our results show absence of such a frozen bulk. We report here that
even the particles in deep layers in the bulk exhibit very slow flow and that
such motion can be detected at an arbitrary depth. The mean velocity of the
creep motion decays exponentially with depth, and the characteristic decay
length is approximately equal to the particle-size and independent of the flow
rate. It is expected that the creep motion we have seeen is observable in all
sheared granular systems.Comment: 3 pages, 4 figure
Volume fluctuations and linear response in a simple model of compaction
By means of a simple model system, the total volume fluctuations of a tapped
granular material in the steady state are studied. In the limit of a system
with a large number of particles, they are found to be Gaussian distributed,
and explicit expressions for the average and the variance are provided.
Experimental and molecular dynamics results are analyzed and qualitatively
compared with the model predictions. The relevance of considering open or
closed systems is discussed, as well as the meaning and properties of the
Edwards compactivity and the effective (configurational) temperature introduced
by some authors. Finally, the linear response to a change in the vibration
intensity is also investigated. A KWW decay of the volume response function is
clearly identified. This seems to confirm some kind of similarity between
externally excited granular systems and structural glasses.Comment: 23 pages, 5 figures; accepted version in Powder Technology, Special
Issue on Granular Temperatur
Geometric Laws of Vortex Quantum Tunneling
In the semiclassical domain the exponent of vortex quantum tunneling is
dominated by a volume which is associated with the path the vortex line traces
out during its escape from the metastable well. We explicitly show the
influence of geometrical quantities on this volume by describing point vortex
motion in the presence of an ellipse. It is argued that for the semiclassical
description to hold the introduction of an additional geometric constraint, the
distance of closest approach, is required. This constraint implies that the
semiclassical description of vortex nucleation by tunneling at a boundary is in
general not possible. Geometry dependence of the tunneling volume provides a
means to verify experimental observation of vortex quantum tunneling in the
superfluid Helium II.Comment: 4 pages, 2 figures, revised version to appear in Phys. Rev.
Phase transitions and the internal noise structure of nonlinear Schr\"odi nger equation solitons
We predict phase-transitions in the quantum noise characteristics of systems
described by the quantum nonlinear Schr\"odinger equation, showing them to be
related to the solitonic field transition at half the fundamental soliton
amplitude. These phase-transitions are robust with respect to Raman noise and
scattering losses. We also describe the rich internal quantum noise structure
of the solitonic fields in the vicinity of the phase-transition. For optical
coherent quantum solitons, this leads to the prediction that eliminating the
peak side-band noise due to the electronic nonlinearity of silica fiber by
spectral filtering leads to the optimal photon-number noise reduction of a
fundamental soliton.Comment: 10 pages, 5 figure
Response properties in a model for granular matter
We investigate the response properties of granular media in the framework of
the so-called {\em Random Tetris Model}. We monitor, for different driving
procedures, several quantities: the evolution of the density and of the density
profiles, the ageing properties through the two-times correlation functions and
the two-times mean-square distance between the potential energies, the response
function defined in terms of the difference in the potential energies of two
replica driven in two slightly different ways. We focus in particular on the
role played by the spatial inhomogeneities (structures) spontaneously emerging
during the compaction process, the history of the sample and the driving
procedure. It turns out that none of these ingredients can be neglected for the
correct interpretation of the experimental or numerical data. We discuss the
problem of the optimization of the compaction process and we comment on the
validity of our results for the description of granular materials in a
thermodynamic framework.Comment: 22 pages, 35 eps files (21 figures
- …
