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Linear response of vibrated granular systems to sudden changes in the vibration intensity
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The short-term memory effects recently observed in vibration-induced compaction of granular materials are
studied. It is shown that they can be explained by means of quite plausible hypothesis about the mesoscopic
description of the evolution of the system. The existence of a critical time separating regimes of “anomalous”
and “normal” responses is predicted. A simple model fitting into the general framework is analyzed in the
detail. The relationship between this paper and previous studies is discussed.
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[. INTRODUCTION The existence of these two different regimes has not been
verified experimentally up to now, although such a behavior
Experiments have shown that when a loose packing ohas been numerically observed in a simple model for granu-
grains is submitted to vertical vibration or “tapping,” it lar compactior5].
slowly approaches a steady state of higher packing fraction As an illustration of the theory, we discuss its application
[1,2]. The final steady density is a decreasing function of theéo a model for compaction introduced recenf,7]. The
dimensionless parameter characterizing the vibration intermodel has already been shown to reproduce the qualitative
sity. Moreover, the relaxation is slower for smaller vibration behavior of granular materials under tapping. Here we will
intensity. In the time evolution of the system neither convecshow that it also captures the same short-term memory ef-
tion effects nor oscillatory behavior are observed. The studyects seen in the experiments. Moreover, it fits perfectly in
of the kinetics of CompaCtion is important both from a formal the genera' scheme developed in this paper, therefore provid_
point of view and because of its economical relevance inng a first test of validation of the ideas in which the theory

many industrial processes. Most of.the pec_uliar_ behaviorg pased. We have also used the model to investigate the
exhibited by granular materials submitted to vibration or tap-a|axation of the system following a perturbation in the vi-

ping processes show a great similarity with ConVem'om"bration intensity for a short-time period. This idea also origi-

structural glasses. This includes slow relaxation, annealinﬁates from the experiments reported in Hl. The results

properties, and hysteresis effects. indicate that the response function is accurately described by
The first study of the response of a granular system to a

sudden change in the vibration intensity we are aware of? Kohlrausch-Williams-WatttKWW) or stretched exponen-

was carried out by means of numerical simulations of af'al function. . . .
The paper is organized as follows. In the next section,

model for compactiori3], and the data indicated the pres- i : - X
ence of memory effects in the evolution of the density of theSOMe general properties of the equation governing the time
system. Very recentljd], memory effects were also directly eyolutlon _of the density in tapping processes of granular me-
observed in a series of experiments. The results showed thgt@ are discussed. These properties are used in Sec. Il to
the system has a short-term memory of its shaking history, sgnalyze the short-term memory effects by considering the
that the response in the evolution of the density to a changgsponse of the system to a small change in the vibration
in the vibration intensity at a given time, is not determinedintensity. The theory is particularized for a simple model for
by the density at that time. Mathematically, this phenomenoriapping in Sec. IV, where other patterns of change of the
implies that the time evolution of the density does not obey avibration intensity are also considered. The choices were
closed ordinary first-order differential equation. originated from the experiments reported in Réi. Finally,

In this paper, we propose a general theoretical frameworl§ec. V contains some additional comments and final re-
to understand the origin and characteristic features of thenarks, as well as a relevant discussion of the relationship of
memory effects seen both in simulations and in experimentsur paper to previous experimental and theoretical studies.
Using quite plausible hypothesis, we will be able to explain
the short-time response of the system to a small change in
the vibrati_on intens_ity. In particu_lar, the theory predi_cts thata || EVOLUTION OF THE DENSITY IN DISCRETE
decreasdincreasg in the |r_1ten5|ty can lead t_o an increase TAPPING PROCESSES
(decrease of the compaction rate on short-time scales, in
agreement with experiments. Nevertheless, is not necessarily Let I' denote the dimensionless parameter characterizing
so. If the change in the intensity is made at the early stages dhe intensity of the vibration applied to the granular medium.
the compaction process, the theory we will develop leads tdn typical experiment$l], I' is defined as the ratio of peak
a modification of the compaction rate having the same sigmcceleration of a tap to the gravity Under very general
as the intensity change. In fact, there is a critical time, whichconditions, the time evolution of the densjtyin a discrete
depends on the tapping intensity before the change, separa#pping process will be given at a mesoscopic level by an
ing the regions of “normal” and “anomalous” responses. equation of the form
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. dp(1) whereu s and u,s denote the steady values of the quantities

p=—gi = T = Fo(I) pa(t). (1) u, and u,, respectively. As pointed out abovg,(t) and
wo(t) are not expected to be simply functions eft) in

Here the time is measured in units of complete taps in somgeneral. But, on the other hand, it seems sensible to assume

continuous limit,f,(I") and f(I") are semidefinite positive that the steady state reached by a given system in a tapping

functions of I' having dimensions of frequency, apg(t)  €XPerimentis fully determined by the intensltyor, equiva-

and u,(t) are positive quantities depending on the state of€ntly; by ps. Therefore, we assume thats and u,s are

the system, but they are not univocally determined by thdunctions ofps, and in the following we are going to inves-

density at the same instapft). Therefore, Eq(1) is not in  tigate some qualitative properties of these functions. gzor

general a closed equation and cannot be solved by itself. The’Pmin: #2s(ps) Must vanish, since by definition ats

two terms on the right-hand side of the equation describe™Pmin there are no processes decreasing the density. There-

elementary processes increasing and decreasing the dens#§fe It IS

respectively. . .
The structure of Eq(1) as a gain-loss equation is consis- im  pos(ps)=0,  lim wq4(ps)>0. (6)
tent with the experimental observations in compaction pro- Ps™Pmin Ps™Pmin

cesses, as we will discuss in detail in the following. Also, ifThe second relationship expresses that starting from the den-
the elementary events taking place in the system being vi- P €xp 9

brated can be described by means of a Master equation,s’é\ty Pmin, any ta_pping process of arpitrary intensky can
formal equation like this follows directly. This is the case for only produce an increase of the density. What happens in the

some simple kinetic models for compaction introduced re_steqdy high-density limit? A similar argument to the one
cently [6-9]. carried out above would lead to

Since Eq.(1) describes the evolution of the density as a
consequence of tapping, the functidnsandf, must vanish
in the limit of no tappingl’=0, so that

lim  u15(ps) =0, lim  po5(ps)>0. (7)

Ps— Pmax Ps— Pmax

Nevertheless, some care is required when analyzing this
limit. Simple models for discrete tapping lead to an absor-
bent steady state in the high-density lif7]. That means
that the system will not be able to leave this state when
submitted to tapping of arbitrary intensity. This is equivalent
d d to saying thathS(ps) also va_nishes fops—>pmax.. As a
f1(I)= d—rfl(r)>0, fo(I)= d—rfz(l“)>0_ (3)  consequence, and in order to |ncIl_Jde such a possibility in our
formulation, instead of E¢7) we will assume the more gen-

. . " . eral and precise condition
We will assume that the above inequalities hold for arbitrary P

I'. The physical reason for this assumption is that we expect

the number of elementary processes taking place in the sys- lim =
tem to increase ds increases. Of course, this does not imply Ps_’Pma%MZS(pS)
by itself that the rate of variation of the density also in-

creases. The behavior pf depends on the net balance be- i€, f2s> i1s WheN ps— pmay, and the density loss term is
tween the gain and loss elementary events, as indicated K{pminant in that limit. Let us note that E¢6) yield
Eq. (1). This picture is in agreement with the qualitative role
of temperature played by the shaking intensity in many dif- lim Has(ps) o
ferent aspect§2,7,10-13. S uad(ps)

In the long-time limit of a tapping process with constant psPmin
I', the experiments show that the system reaches a steady tpe simplest behavior that is consistent with E@.and
state with a densitys, which is a monotonic decreasing (g) is that the ratiqu,s/ s be a monotonic decreasing func-
function of I', as displayed by the “reversible” branch in 5 of the steady densitys going from infinity to zero.
cycling experiment$9]. Let us point out that the relaxation gjnce there is not any physical reason to expect a more com-
process is very slow, and for very small valueslofthe — njicated density dependence, we assume this is the case in

steady density is hard to reach within the experimental time, ,r formalism. From the steady condition given by B3, it
scale. Therefore, the functionpg(I') verifies that fq0ws that ’

dp(I')/dI'<0, and it is bounded by the two formal limits

f1(0)=f5(0)=0. )

Because of continuity, it follows, at least for small values of
the intensityl’, that

H1s(ps) _ %)

(€)

. . fo(1')
Pmin= M ps(T),  pmax= lim pg(T'). 4 H1s = Z—Eg(F). (10
I r-o pos  fu(T)
Particularization of Eq(1) for a steady state yields The functiong(I') is a measure of the rate of the decompac-
tion processes with respect to the rate of the compaction
f1() pis=TFo(17) o, (5)  ones. Because of EgE) and(9), it is
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lim g(I") =ce,

I'—ow

limg(I")=0.
r—o

11

Taking the derivative with respect to the intensityin Eq.
(10), we obtain:

dg(T') dps d (%) 0,

Tdr  dT dps o 12
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Of course, as long as E([L5) is accurate, the larger tHe
the faster the compaction of the system, in agreement with
experiments. Over a larger time scale, the completd F),
including the decompaction term, is needed in order to ex-
plain the dependence of the steady dengitpn I', and also
the existence foa a slow long-time tail in the relaxation of
the density, onces— p(t) is very small. In this context, the
presence of an “anomalous” density relaxation, following
an inverse logarithm law, would be associated to some spe-

where we have taken into account the monotonically decific dynamical properties of the compaction tepm when
creasing density dependence afs/u,s assumed above. the system is submitted to “nonlinear” tapping processes
The physical meaning of Eq12) is evident; the rate of the [1,2]. We use the term “nonlinear” here in the sense that, in

decompaction processes grows faster Witthan the rate of

the experiments, the initial value of the density is not very

the compaction processes. Also this implication of our asclose to the steady density.

sumptions seems physically plausible.

Later on, we will show that an evolution equation like Eq.

In summary, we can write the equation for the time evo-(13) applies in the case of a simple model recently intro-

lution of the density in discrete tapping processes as

dp(t)

— = D)= g(T) (D], (13)

with f; andg being positive increasing functions bf, both
of them vanishing in the limil"—0. The quantitiesu(t)

duced to describe discrete tappif®7,10. Another similar
equation is obtained for the “parking” modé¢B,9,14,185,
although this latter refers to continuous vibration processes,
in which the system is not allowed to relax to a metastable
configuration between every two vibration cycles. In the
parking model, the state of maximum densjiy,,, is not
totally absorbent, but this possibility has been included in

and u,(t) are some moments of the complete distributionour theory, as discussed below E{). By identifying the
function of the system, and they contain the influence ofintensity of tappingl’ with the ratio between the desorption
correlations on the evolution of the density. As a conseand adsorption rates in the parking model, it is trivial to

qguence, Eq(13) is not a closed equation.

check by using the expressions in R] that the quantities

Becausgy(I") vanishes fol’— 0, if a tapping experiment corresponding tquqs and u,g Vverify that their ratio is an
with low enough intensity" is carried out, the decompaction increasing function ofp,, and also the limiting behavior
termf(I")g(I") wo(t) will be negligible in the first stages of given in Eqgs.(8) and(9). Moreover, the steady density is an

the process, i.e.,

()

oDt L a4

and the evolution of the system will be approximately de-

scribed by

dp(t)

T:fl(r)ﬂl(t)- (15

increasing function of the quantity playing the role of the
vibration intensity. In conclusion, the parking model belong
to the general class of systems we have considered.

Ill. RESPONSE TO SMALL VIBRATION
INTENSITY JUMPS

In this section we will investigate whether Ed.3), which
has been built under very general arguments and is expected
to have a wide range of applicability, is able to predict the
memory effects recently observed in vibration-induced com-

At much later times, whermp(t) is close enough to the paction in granular materiald]. The fact that the equation is
asymptotic steady value, the decompaction contribution imot closed for the density, implies that its time evolution in a
Eg. (13) plays a decisive role, leading to a steady densitygiven experiment with constart is not determined by its

Ps<Pmax, and it is

a(t)

IO

(16)

the initial value. Starting from the same valgg, different
time evolutions are possible depending on the way in which
the system was prepared. Our aim is to analyze some par-
ticular relevant manifestations of this general statement.
Consider that, starting from a given configuration, the sys-

The observed behavior that the system tends towards tem is tapped with an intensity. At a certain timet,,, the

steady state and, therefore, a regime where u,, andg
verify a relationship of the form given in Eq16), can be
understood ifuq(t) decreases in time whilg, increases.

intensity is instantaneously changedIie- AT". Quite pecu-
liarly, it has been observed in the experiments that the
change in the compaction rate has opposite sign thatlof

Quite interestingly, this is consistent with a mean-field ap-on short time scales, though in the long-time regime the re-

proximation in whichu(t) is replaced byuq4 p(t)] and

laxation is slower for smaller values of the intensity of vi-

uo(t) by uad p(t)]. Sincep(t) increases monotonically in brationI'. The same kind of effect has also been previously
time, andu s/ 1, is @ monotonic decreasing function of the found numerically in some models for compactidn16,3,

density, it follows that the left-hand side of E(L6) will
decay in time.

although it only shows up when the time intentglis not
too short. Ifl" is changed at the beginning of the compaction
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process, the variation of the compaction rate has the samkhis renders compatible and explains what is seen in the

sign asAT' [5,17). experiments and also in numerical studies of simple models.
Application of Eq.(13) for the instant,, , just before the ~From our analysis it follows that there (at least a timet,,
change in the intensity of the vibration, yields which depends on the value bf, such that the response of
_ the system to a small variation of the intensity of tapping is
rw=p(ty)=f1(I) [ w1—9() pou ] (17) qualitatively different fort<t. andt>t..

The study carried out in this section has been restricted to
where uq,,= u1(t,,) and uy, = uo(ty,). When the intensity  small instantaneous changeslinallowing the use of a lin-
of vibration is changed intd"+ AT, the compaction rate ear analysis of Eq(13). Whether the behavior of the system
becomes remains the same when submitted to a finite change in the
. shaking intensity, it cannot be inferred from our analysis. In
rw=p(ty)=f1(T+AT) [ g, —9(T+AT)uy,]. (18 this case, nonlinear effects can modify dramatically the re-
sponse of the system. More will be said about this in the next

The continuity of the distribution function of the system im- ¢action of the paper.

plies thatu; =u; andu, =pu, for an instantaneous jump

. . . VI
of I, although there is a dlscontmunélrw—rw_ ry in the IV. APPLICATION TO A SIMPLE MODEL FOR
compaction rate. FOAT" small we can approximate COMPACTION

Ary , f1(I) The general scenario developed in the previous sections
At D= () o] =419 (F)szfl(—r)rw will be particularized here for a one-dimensional lattice
model for compactiofi7,10]. In the model, each sitecan be
—f(T)g"(T) oy - (19 either empty or occupied by a particle. A variaite is de-
fined, beingm;=1 in the former case and; =0 in the latter.
A configuration of the system is fully specified by giving the
values of all the variablem={m;}. As usual, we will refer

Therefore, if over the compaction curve corresponding t
intensityI", we define the function

£1(I) to the empty sites as being occupied by a hole.
At = ! r(t)— (g’ (T uo(t), (20) Let us describe the dynamics of the system when submit-
fo(') ted to a discrete tapping process. Mechanical stability re-

quires that all the holes be isolated, i.e., surrounded by two
particles, at the end of every tap. The time evolution of the
system is defined as a Markov process, and formulated by
means of a Master equation for the probability distribution of
the systenj7,10]. The equation contains the transition rates

. = _ W(m|m’) from statem’ to statem. There are three kinds of
change in the same direction a§'. Let us analyze the sign ,,«qjpje’transitions. Indicating only the variables associated

of the functionA(t). In the long-time limit, formallyty i the sites involved in the transitions, the nonvanishing tran-
—oo0, the system is known to reach the asymptotic Stead)éition rates are

density, so that,,—0 and, consequently,

the sign of this function at the timig, when the intensity is
changed will determine the relative behavior &f,, with
respect toAT", for infinitesimal changes of the latter. M,
=(t,) <0, the anomalous response observed in the exper
ments will follow, while if \,,>0 the compaction rate will

(1) Elementary diffusive events conserving the number of
No=lim N (t)=—F (I g’ (') us(I' <0, (21) particles,

t—oo

o
where it has been taken into account that bbtfl") and W(0101100 =W(010001) = 2’ (23
g,(I') are positive increasing functions df and that N . . ]
wos(I)>0. (2) Transitions increasing the number of particles,
On the other hand, if the initial density in the experiment
is the minimum possible density of the system at yegh, W(010101) = ﬁ, (243
corresponding to the random loose packing configuration, it 2
follows from the properties oft, that
o
£1(I) W(001101)=wW(100101) = 1 (24b
lim A(t)= ——r(0)>0. (22)
t0 f1(I")

(3) Transitions increasing the number of holes, i.e., decreas-

Even though we have considered in our discussion giat N9 the number of particles,

=0)=pnin in order to derive the above inequality, the same o2

result will apply if the initial density is close enough to it, so W(0101000100 = —, (259

that the first term on the right-hand side of Eg§0) domi- 2

nates the second one in the initial regime. 5
Then, we conclude that for short timest,, andAT" have _ _ e

the same sign, while for large times their signs are opposite. (010101000 =W(0101000010 = 4- (250
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In the above equationg; is a positive constant, characteriz- 0.5 ' ' - -
ing the tapping process completely, and playing in the model
a role similar to the intensity of vibratioh in real experi-
ments. Fore# 0, the system evolves from any arbitrary ini-
tial configuration to a final steady state with density

ps(a)=%[1+(1+4a)*1’2]. 26

From here it follows that

lim ps=1=pmax,  liM ps=5=pmin, (27)
a—0 a—®©
being o ' ' ' '
0 20 40 60 80 100
t
dps
a< 0, (28) FIG. 1. Time evolution of the functior defined in Eq(39), for

a vibration intensitye=0.15(solid ling). Also plotted is the mean-

for all «. Therefore the density in the model has the samdi€ld approximation fon (dashed ling
kind of dependence on the intensity as assumed in the o ) o
general discussion in Sec. Il. The time evolution pfis ~ While in the high-density limitps— pmayx=1, both x5 and

obtained from the Master equation for the model, and readé2s Vanish, as a consequence of the absorbent character of
[18] the state with all the sites occupied by particles. The ratio

. a? 1 1
p=aXin(t)— > Xoo1od t) + Exomodt)Jr Exooou(t) \
(29

H1s(ps) _ ps(ps—1)
m2s(ps)  (2pg—1)2

(35

h is th trati f1h ite clust £ th vanishes in this latter limit. Equatior(84) and (35) are in
where Xg1, is the concentration of three-site clusters o eagreement with Eq¢6) and(8). Moreover,u 1o(po)/ thas( pe)

form hole-particle-holexooqo is the concentration of five- ", ‘o0 atonic decreasing function pf and, consistently
site clusters formed by a hole between two pairs of par'ucles[,see Eq(10)] '

and so on. Comparison of Eq4) and(29) allows to identify

fi@)=a, fa)=a?, (30 g(a)=:i—3=a (36

t) =X101(1),
#a(t) =x10,(1) is an increasing function ok, vanishing in the limita—0.
1 1 We conclude that this model for compaction fits perfectly
wo(t)= Exoomdt)"‘ Z[Xomoc{t)"‘xooou(t)]- (31  the general picture developed in the previous sections. Equa-
tion (13) particularized for the model is

In the steady state, the only correlations in the system are dp(t)

those forbidding to have two nearest-neighbor hdls]. g = alpr—aupn), (37
Then, it is a simple matter to compute the steady values of dt

the several cluster concentrations appearing in(Btj. with ) ) )

the result with u, and u, defined in Eq.(31). To solve Eq.(37) we

would need soméapproximate expressions for the cluster
(1—pg)? concentrations as functions of the density.
MPig=——, (32 If we submit the system to the tapping experiment de-

Ps scribed in Sec. I, the effect of the intensity chanyje at

t=t, on the compact rate will be given by
_(1-p9(2p—1) !

33
M2s pg ( ) AI’W »
Ba o @9
In the limit ps— pmin=1/2,
in the limit of smallA «. Therefore, the function determining
_)} -0 (34) whether the response of the system will be “normal” or
MisT o Moo “anomalous” is
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' ' 0.85 ; .
0.84
08
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0.82
075 |
0.8 ' '
07 ' -
40 60 80 100 5 " " .

t t

FIG. 2. Evolution of the densitp, as a function of the number
of tapst. Five numerical experiments are shown, the vibration in-
tensity a« was changed at, =50, wherex<0, from 0.15 to 0.1,

FIG. 3. The same experiment of Fig. 2, but the change in inten-
sity is introduced at an earlier timg,=10, at whichA>0. The

q ; b h h aiurves correspond to the same values b&s in Fig. 2, but now are
0.125, 0.15, 0.175, and 0.2, from top to bottom. Thus, the centr rdered from bottom to top. In this region the response is “nor-

curve corresponds to no change in the tapping intensitgolid 5 o the compaction rate increases with the vibration inten-
line), while the dotted and dashed lines correspond to a decrea%qt

and an increase ir, respectively. The “anomalous” response ex-

perimentally observed shows up. (Aa=0.05) than fora’=0.1 (Aa=-0.05). This feature
cannot be explained by E@38), and it is due to nonlinear
r(t) effects that have been neglected in the linear approximation
U= ~amAl). (39 used here. This will be analyzed below.

In Fig. 3 the same set of experiments is carried out, with
. . . B the only difference that in this case the intensitys modi-
Lne;g'Olt):;'r?efgngt'O&;gogzglcf)ozi;gégb;h; CtLlfge,\;:SSterfied att,=10<t.. The several curves correspond to the
equation of the system The data represent an average ovgr values as in Fig. 2, but now they are ordered from
18 different runs B%he iﬁitial state waspthe one corres gndin ottom to top. As predicted by the theory, the variatrio1 n of the
to the stead mi.nimum density. For this particular vglue of ompaction rate has the same sign as the change fore-

. ady Y. P over, the same kind of nonlinear effects as in Fig. 2 are

the intensitya, \(t) changes sign between taps 19 and 20,
) . resent.
i.e., 19=t.<20. For comparison purposes, we have als

) o X Now, we will briefly discuss the nonlinear corrections in
plotted the mean-field approximation faft) (dashed ling . . :
The latter has been constructed by substituting in @6) A« to the change in the compaction rate. It is easy to show

ua(t) and aa(t) by s p()] and o (1), respectively,

and using for the density the simulation results. It is seen that Ary=Aak,—(Aa)2uqy,. (40)

the mean-field approximation also changes sign, but for

larger times, and it is always above the “exact” Monte Carlo The second term on the right-hand side of Q) is ne-

curve. This is consistent with the mean-field approximationglected in the linear approximation. In this simple model, the

giving a faster approach to the steady state than the actuabnlinear correction is always negative, so it can modify

relaxation of the systerfiL8]. dramatically the response of the system to the julp if
According to the results derived in this papér,, is  the linear termAa\,>0. In particular, there is a critical

expected to have a different sign than that for t,>t. and  value

the same fott,,<t.. In order to check this theoretical pre-

diction, we have carried out series of Monte Carlo simula- Aw

tions, all of them starting in the minimum density configura- A“CZE (42)

tion, with «=0.15. Att, =50, the value of the intensity

was instantaneously changedd6. The results for four dif-  such thatAr,,=0. For smaller jumpdA | <|Aag|, the sign

ferent values ofa’ are reported in Fig. 2, namely, of Ar,, is the one predicted by the linear approximation, but

0.1,0.125,0.15,0.175, and 0.2, from top to bottom. The cenfor larger jumps|A «a|>|Aag|, the sign ofAr,, is the oppo-

tral value corresponds to no change. Since in these simulaite to the prediction of the linear approximation. For the

tions itist,,>t., the compaction rate is observed to decreasesake of concreteness, in Fig. 4 we have repeated the numeri-

as the value ok’ increases. It is also seen that the amplitudecal experiment of Fig. 2, but with larger intensity jumps.

of the jump in the compaction rate is larger far =0.2  From the Monte Carlo simulation, we obtain the critical
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Following Ref.[4], we have also considered another se-
ries of numerical experiments where the system was tapped
up to the same density with three different intensities,
=0.2, 0.15, and 0.1, respectively. Afterwards, the system
was always tapped with the same intensity=0.15. The
time evolution of the density is shown in Fig. 5, where the
time origin for each experiment has been taken at the time
when the system reached the prescribed density, nampely,
=0.8. The figure clearly shows that the evolution of the den-
sity for t>0 strongly depends on the previous tapping his-
tory, indicating the relevance of short-term memory effects.
Mathematically, this is equivalent to say that(t) and
uo(t) in Eq. (1) are not determined univocally by the density
at the same time, so that it is not in fact a closed first-order

08 , . ordinary differential equation. Note that in all the plotted
40 60 80 100 curves the jump in the compaction rate has opposite sign
t than the variation of the intensity. We have verified thét)

FIG. 4. Time evolution of the densitp when the vibration IS Ne€gative at the time in which the intensity is modified in
intensity « is changed at,, =50, wherex<0, from a=0.15 to  all cases, the behavior being then consistent with the theory.
a’=0.05(circles and 0.03(squarey respectively. The curve cor-
responding to a constant vibration intensity- 0.15 is plotted for V. DISCUSSION
reference(solid ling). For such large jumps, the linear approxima-
tion is not valid, and the compaction rate does not increase. In fact, Along this paper, we have studied the nonequilibrium lin-
a'=0.05 corresponds to the critical valuka., for which no  ear response of a vibrated granular system to an instanta-
change in the compaction rate is observed for short times. neous change in the intensity of the taps. In the first part, a

general theory was developed on the basis of some plausible
value Aag=—0.1 for #=0.15 andt,=50. Then, aty=50  nypothesis about the mesoscopic dynamics of the system.
we change the vibration intensity from=0.15 toa’=a  Thg regults are in qualitative agreement with the experimen-
+Aa;=-0.05, finding that the compaction rate does noti| ghservations. In particular, the presence of short-term
change in the short-time I|mIt—tW—>0.,Moreover, if the  memory effects appears as correlated with the relaxation
vibration intensity is further decreased, =0.03, the com- 5 5nerfies of the system at constant intensity. An important

paction rate also decreases, while the Iineat_ approximatiofheoretical prediction, not observed in the experiments yet, is
predicted an increase of the compaction rate'ik @, Sinc€  he existence of a critical time,. For timest<t, the re-

Aw<0. sponse of the system to a change in the intensity is “nor-

0.85 . ' mal,” in the sense that an increase in the intensity produces
a positive jump in the compaction rate. On the other hand,
for t>t., an “anomalous” response is produced. The
change in the compaction rate has opposite sign than that of
the modification of the vibration intensity, in contrast with
the long-time behavior found in experiments, where the re-
laxation is faster for larger vibration intensity.

In the second part of the paper, a simple model for com-
paction has been considered. It is shown to fit perfectly into
the general scheme developed before, allowing a detailed
quantitative analysis of the theoretical predictions. This is
not a peculiarity of this model, since the “parking” model
[9] also verifies all the conditions assumed in the theoretical
framework. In fact, this is not surprising because this latter
model has a mathematical structure very similar to the one

0.84

0.82

075 . . considered in this papg6].
20 0 20 40 In Sec. IV we have shown that our model reproduces the
t experimentally observed behavior of the system when sub-

FIG. 5. Time evolution of the density for a system, which was Mitted to changes in the vibration intensity under different
tapped up to the same densjty- 0.8 using three different intensi- conditions [4]. Now we will refer to a more complicated
ties, @=0.2 (circles, 0.15 (squarel and 0.1 (triangles. After- pattern of changes in the intensity that are also discussed in
wards, the system was always tapped with=0.15. The time ori- ~ Ref.[4]. First, the system is shaken with an intendity («
gin for each experiment has been taken at the time when the systeti the model notationfor a long period of time, so that the
reached the prescribed density, namely;0.8. The evolution for ~ system practically reaches a steady density. Afterwards, at a
t>0 strongly depends on the prehistory of the system. time taken ag=0, the intensity is switched tb>T" for a

061301-7



J. JAVIER BREY AND A. PRADOS PHYSICAL REVIEW B3 061301

1 . . - - wherep(tg) is the density of the system at the time in which
the the intensity is switched back tg,. For the model, the
steady values of the density can be computed analytically
[6], and it isps(a=0.3)=0.8371. For a given time interval
t—tg, ¢(t) increases with the “waiting” timey. Thus, the
relaxation is slower for largety, consistently with the ex-
perimental observatiof4]. Also, we have fittedsolid lineg

the data to a stretched exponential or KWW functj@8],

t—to

B
prwnl )= pe( @)~ [Ps(ao)—p(to)]exp{—<7)

(44)

with 7 and B being fitting parameters. As observed in the
figure, the fit is quite satisfactory, except for times very close
to tg and, probably, for very large times. The paramgien
Eq. (44) measures the width of the relaxation-time distribu-
tion. The values we have found go frof=0.366 fort,
=1 to B=0.478 fort,=8. The latter is close to the value
FIG. 6. Relaxation function(t), defined in Eq.(43), of the 1/2, chargcteris_tic of systems whose dynamics are dominated
model, when it is prepared by tapping for a long time with by one?dlm_ensmnal d_lffuswe processes. Ho_v_vever, the KWW
=0.3, and afterwards tapped fg==1, 2, 4, and 8from bottom to  '€laxation is not equivalent to a superposition of exponen-
top) with a larger intensityx’ =0.5. Finally, the intensity is turned tials with the same amplitude, as proposed in R&ff. There-
back to the original intensitw=0.3. All the curves tend to zero in fore, this point deserves more work in the future, both theo-
the infinite time limit, and the solid lines are the best numerical fitsretically and experimentally. With respect to the long-time
to a KWW function. behavior predicted by E¢42), we could not reach a definite
answer. Although the numerical data seems to be compatible
given period of timet, and, finally, the system is tapped with it, the noise is too large and further high-precision stud-
again with the original intensity’o, and the subsequent re- ies would be required.
laxation of the system is studied. Experimentally it was Finally, a crucial point in the analysis presented in this
found that the relaxation is slower the larger thpthe sys-  paper is the small amplitude of the perturbation in the vibra-
tem “ages.” Moreover, on the basis of a simple two-statetion intensityAT'. As pointed out at the end of Sec. Ill, the

0 20 40 60 80 100
t-t,

model, it was proposed that behavior following a large change in the intensity may be
different. In the model considered in Sec. IV the nonlinear

exp( — xot) corrections are very simple, leading always to a decrease in

p() = ps~ Tt (42 the compaction rate and to the appearance of a critical value

of the intensity jump, such that no change in the vibration
for t—ty>1. In the above expressiom, is a decreasing intensity is observed in the short-time regime. Moreover, for
function oft,. Josseranet al. [4] also reported that the re- jumps larger than the critical one, the sign of the change in
laxation can be fitted by a superposition of exponentials, althe compaction rate is reversed as compared with the predic-
of them with the same amplitude. We have carried out nution of the linear approximation. We think that it is worth
merically this kind of experiments in our model. In Fig. 6 we looking for this kind of behavior in other models for com-
present the results obtained witly=0.3, «=0.5, and four  paction, and also in experiments with real granular systems.
different values oty, namely,ty=1,2,4, and 8 from bottom

to top. The plotted response functi@r(t) is defined as ACKNOWLEDGMENTS
ot This research has been partially supported by the Direc-
b(t)= psla0)=p() (43  cion General de InvestigagioCientfica y Tecnica (Spain
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