12 research outputs found

    Light-activated signaling in DNA-encoded sender-receiver architectures

    No full text
    Collective decision making by living cells is facilitated by exchange of diffusible signals where sender cells release a chemical signal that is interpreted by receiver cells. A variety of nonliving artificial cell models have been developed in recent years that mimic various aspects of diffusion-based intercellular communication. However, localized secretion of diffusive signals from individual protocells, which is critical for mimicking biological sender–receiver systems, has remained challenging to control precisely. Here, we engineer light-responsive, DNA-encoded sender–receiver architectures, where protein–polymer microcapsules act as cell mimics and molecular communication occurs through diffusive DNA signals. We prepare spatial distributions of sender and receiver protocells using a microfluidic trapping array and set up a signaling gradient from a single sender cell using light, which activates surrounding receivers through DNA strand displacement. Our systematic analysis reveals how the effective signal range of a single sender is determined by various factors including the density and permeability of receivers, extracellular signal degradation, signal consumption, and catalytic regeneration. In addition, we construct a three-population configuration where two sender cells are embedded in a dense array of receivers that implement Boolean logic and investigate spatial integration of nonidentical input cues. The results offer a means for studying diffusion-based sender–receiver topologies and present a strategy to achieve the congruence of reaction-diffusion and positional information in chemical communication systems that have the potential to reconstitute collective cellular patterns

    Hierarchical control of enzymatic actuators using DNA-based switchable memories

    Get PDF
    Inspired by signaling networks in living cells, DNA-based programming aims for the engineering of biochemical networks capable of advanced regulatory and computational functions under controlled cell-free conditions. While regulatory circuits in cells control downstream processes through hierarchical layers of signal processing, coupling of enzymatically driven DNA-based networks to downstream processes has rarely been reported. Here, we expand the scope of molecular programming by engineering hierarchical control of enzymatic actuators using feedback-controlled DNA-circuits capable of advanced regulatory dynamics. We developed a translator module that converts signaling molecules from the upstream network to unique DNA strands driving downstream actuators with minimal retroactivity and support these findings with a detailed computational analysis. We show our modular approach by coupling of a previously engineered switchable memories circuit to downstream actuators based on ÎČ-lactamase and luciferase. To the best of our knowledge, our work demonstrates one of the most advanced DNA-based circuits regarding complexity and versatility

    Effect of nitrogen vacancies on the growth, dislocation structure, and decomposition of single crystal epitaxial (Ti1-xAlx)N-y thin films

    No full text
    The effect of varying nitrogen vacancies on the growth, microstructure, spinodal decomposition and hardness values of predominantly single crystal cubic phase c-(Ti1-xAlx)N-y films was investigated. Epitaxial c-(Ti1-xAlx)N-y films with y = 0.67, 0.79, and 0.92 were grown on MgO(001) and MgO(111) substrates by magnetron sputter deposition. High N vacancy c-(Ti1-xAlx)N-0.67 films deposited on MgO(111) contained coherently oriented w-(0001) structures while segregated conical structures were observed on the films grown on MgO(001). High resolution STEM images revealed that the N-deficient growth conditions induced segregation with small compositional fluctuations that increase with the number of N vacancies. Similarly, strain map analysis of the epitaxial c-(Ti1-xAlx)N-y (001) and (111) films show fluctuations in strain concentration that scales with the number of N vacancies and increases during annealing. The spinodal decomposition coarsening rate of the epitaxial c-(Ti1-xAlx)N-y films was observed to increase with decreasing N vacancies. Nanoindentation showed decreasing trends in hardness of the as-deposited films as the N vacancies increase. Isothermal post-anneal at 1100 degrees C in vacuum for 120 min revealed a continuation in the increase in hardness for the film with the largest number of N vacancies (y = 0.67) while the hardness decreased for the films with y = 0.79 and 0.92. These results suggest that nitrogen-deficient depositions of c-(Ti1-xAlx)N-y films help to promote a self-organized phase segregation, while higher N vacancies generally increase the coherency strain which delays the coarsening process and can influence the hardness at high temperatures
    corecore