496 research outputs found

    Concept of Formation Length in Radiation Theory

    Full text link
    The features of electromagnetic processes are considered which connected with finite size of space region in which final particles (photon, electron-positron pair) are formed. The longitudinal dimension of the region is known as the formation length. If some external agent is acting on an electron while traveling this distance the emission process can be disrupted. There are different agents: multiple scattering of projectile, polarization of a medium, action of external fields, etc. The theory of radiation under influence of the multiple scattering, the Landau-Pomeranchuk-Migdal (LPM) effect, is presented. The probability of radiation is calculated with an accuracy up to "next to leading logarithm" and with the Coulomb corrections taken into account. The integral characteristics of bremsstrahlung are given, it is shown that the effective radiation length increases due to the LPM effect at high energy. The LPM effect for pair creation is also presented. The multiple scattering influences also on radiative corrections in a medium (and an external field too) including the anomalous magnetic moment of an electron and the polarization tensor as well as coherent scattering of a photon in a Coulomb field. The polarization of a medium alters the radiation probability in soft part of spectrum. Specific features of radiation from a target of finite thickness include: the boundary photon emission, interference effects for thin target, multi-photon radiation. The experimental study of LPM effect is described. For electron-positron colliding beams following items are discussed: the separation of coherent and incoherent mechanisms of radiation, the beam-size effect in bremsstrahlung, coherent radiation and mechanisms of electron-positron creation.Comment: Revised review paper, 96 pages, 28 figures. Description of SLAC E-146 experiment removed, discussion of CERN SPS experiment adde

    Bipolar distribution of deep-sea benthic foraminifera

    Get PDF
    Abstrac

    Giant protists (xenophyophores, Foraminifera) are exceptionally diverse in parts of the abyssal eastern Pacific licensed for polymetallic nodule exploration

    Get PDF
    Xenophyophores, giant, fragile, agglutinated foraminifera (protists), are major constituents of the abyssal megafauna in the equatorial Pacific Clarion-Clipperton Zone (CCZ), a region where seabed mining of polymetallic nodules may occur in the future. As part of a baseline study of benthic communities we made extensive collections of xenophyophores in two areas (UK-1 and OMS) licensed for exploration by the International Seabed Authority. Based on test morphology, we distinguished 36 morphospecies (34 new to science) among 130 specimens. Twenty of these morphospecies yielded 184 DNA sequences, a 14-fold increase in genetic data for xenophyophores that confirms their high diversity in the eastern CCZ. A further 15 morphospecies (8 new to science) were recognised in samples from two other areas (APEI-6 and Russian exploration license area) within or adjacent to the CCZ. This large number of species confirms that the CCZ is a focal area for xenophyophore diversity. More broadly, it represents an unprecedented increase in the known global diversity of xenophyophores and suggests that many species remain undiscovered in the World's oceans. Xenophyophores are often sessile on nodules in the CCZ, making these delicate organisms particularly vulnerable to mining impacts. They can also play a crucial role in deep-sea ecosystems, providing habitat structures for meiofaunal and macrofaunal organisms and enhancing the organic content of sediments surrounding their tests. The loss of xenophyophores due to seabed mining may therefore have wider implications for the recovery of benthic communities following major human disturbances on the abyssal seafloor

    Five new species and two new genera of xenophyophores (Foraminifera: Rhizaria) from part of the abyssal equatorial Pacific licensed for polymetallic nodule exploration

    Get PDF
    Based on a combination of morphological and molecular data, we describe five new species and two new genera of xenophyophores from the Clarion–Clipperton Zone (abyssal eastern Pacific), an area with commercially valuable seafloor deposits of polymetallic nodules. Bizarria bryiformis gen. et sp. nov. displays unusual features, notably an organic-walled test, largely devoid of agglutinated particles, comprising interconnected branches growing upwards from the nodule substrate; the bases of the branches contain dark masses of waste material (stercomare) and pale strands of cytoplasm (granellare), the whitish, tuft-like extremities contain sediment particles. Tendalia reteformis gen. et sp. nov. forms a delicate network of agglutinated tubes. Shinkaiya contorta sp. nov. is characterized by a contorted, partly reticulated plate-like test while the simpler plate-like test of Galatheammina interstincta sp. nov. combines characters typical of Galatheammina and Psammina. In Semipsammina mattaeformis sp. nov., a thin, delicate test with one or more tubular extensions forms a flat canopy over the mat-like stercomare encrusting the nodule substrate. Tendalia reteformis and S. contorta are free-living; the other species are sessile on nodules. Together, they illustrate the considerable morphological diversity of xenophyophores in a region where they dominate the megafauna, and highlight some major taxonomic challenges posed by these giant monothalamous foraminifera

    Foraminiferal biodiversity associated with cold-water coral carbonate mounds and open slope of SE Rockall Bank (Irish continental margin-NE Atlantic)

    Get PDF
    Cold-water coral (CWC) ecosystems are hotspots of macro- and microfaunal biodiversity and provide refuge for a wide variety of deep-sea species. We investigated how the abundance and biodiversity of 'live' (Rose Bengal stained) foraminifera varies with, and is related to, the occurrence of CWC on the Rockall Bank (NE Atlantic). Qualitative and quantitative analyses were performed on 21 replicate samples from 8 deep-sea stations, including 4 stations on CWC-covered carbonate mounds at depths of 567-657 m, and 4 stations on the adjacent slope at depths of 469-1958 m where CWC were absent. This sampling strategy enabled us to demonstrate that sediments surrounding the living CWC were characterised by higher foraminiferal abundance and biodiversity than open-slope sediments from the same area. A total of 163 foraminiferal species was identified. The dominant species in CWC sediments were: Spirillina vivipara, Allogromiid sp. 1. Globocassidulina subglobosa, Adercotryma wrighti, Eponides pusillus, Ehrenbergina carinata, Planulina ariminensis, Trochammina inflate and Paratrochammina challenged. Foraminifera were nearly absent in adjacent open slope areas subject to strong tidal currents and characterised by coarse grained deposits. We suggest that CWC create a heterogeneous three-dimensional substrate offering microhabitats to a diverse benthic foraminiferal community

    Investigation of Touch-Sensitive Responses by Hyphae of the Human Pathogenic Fungus Candida albicans

    Get PDF
    Candida albicans is a fungus that commonly infects the mucosal surface of humans. The hyphal growth form of this fungus may initiate the primary invasion of the host. Here we show that hyphae respond thigmotropically and morphologically to cues such as the presence of a surface, pores, grooves and ridges. Growth on some firm surfaces elicits a helical growth response. Hyphae follow grooves and ridges of inert substrates and penetrate pores of filtration membranes. Our in vitro experiments suggest that thigmotropism may enhance the ability of a hypha to invade epithelia of a host at sites of weakened integrity

    Giant protists (xenophyophores, Foraminifera) are exceptionally diverse in parts of the abyssal eastern Pacific licensed for polymetallic nodule exploration

    Get PDF
    Giant protists (xenophyophores, Foraminifera) are exceptionally diverse in parts of the abyssal eastern Pacific licensed for polymetallic nodule exploratio

    Reduced admixture of North Atlantic Deep Water to the deep central South Pacific during the last two glacial periods

    Get PDF
    Key Points: ‱ Little deep water circulation changes in the past 240,000 years in the central South Pacific ‱ Reduced North Atlantic Deep Water admixture during glacials to the Southern Ocean ‱ South Pacific lithogenic material mainly sourced from SE Australia and South New Zealand The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific basin are exchanged. Here we reconstruct the deep-water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of -5.8 and 18.757 for ΔNd and 206Pb/204Pb, respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water (NADW) to CDW during cold stages. The absolute values and amplitudes of the benthic ÎŽ13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific

    New observations on test architecture and construction of Jullienella foetida Schlumberger, 1890, the largest shallow-water agglutinated foraminifer in modern oceans

    Get PDF
    We present new observations on Jullienella foetida Schlumberger, 1890, a giant agglutinated foraminifer with a leaf- or fan-like test reaching a maximum dimension of 14 cm, that is common on some parts of the west African continental shelf. The test wall comprises a smooth, outer veneer of small (7.0 g wet weight m−2 for the seafloor biomass of J. foetida in areas where it is particularly abundant. The relatively restricted distribution of this species off the north-west African coast at depths above 100 m is probably related to the elevated, upwelling-related surface productivity along this margin, which provides enough food to sustain this high biomass. This remarkable species appears to play an important, perhaps keystone, role in benthic ecosystems where it is abundant, providing the only common hard substrate on which sessile organisms can settle
    • 

    corecore