301 research outputs found

    Material-Specific Investigations of Correlated Electron Systems

    Full text link
    We present the results of numerical studies for selected materials with strongly correlated electrons using a combination of the local-density approximation and dynamical mean-field theory (DMFT). For the solution of the DMFT equations a continuous-time quantum Monte-Carlo algorithm was employed. All simulations were performed on the supercomputer HLRB II at the Leibniz Rechenzentrum in Munich. Specifically we have analyzed the pressure induced metal-insulator transitions in Fe2O3 and NiS2, the charge susceptibility of the fluctuating-valence elemental metal Yb, and the spectral properties of a covalent band-insulator model which includes local electronic correlations.Comment: 14 pages, 7 figures, to appear in "High Performance Computing in Science and Engineering, Garching 2009" (Springer

    Diamond nano-pillar arrays for quantum microscopy of neuronal signals

    Get PDF
    Modern neuroscience is currently limited in its capacity to perform long term, wide-field measurements of neuron electromagnetics with nanoscale resolution. Quantum microscopy using the nitrogen vacancy centre (NV) can provide a potential solution to this problem with electric and magnetic field sensing at nano-scale resolution and good biocompatibility. However, the performance of existing NV sensing technology does not allow for studies of small mammalian neurons yet. In this paper, we propose a solution to this problem by engineering NV quantum sensors in diamond nanopillar arrays. The pillars improve light collection efficiency by guiding excitation/emission light, which improves sensitivity. More importantly, they also improve the size of the signal at the NV by removing screening charges as well as coordinating the neuron growth to the tips of the pillars where the NV is located. Here, we provide a growth study to demonstrate coordinated neuron growth as well as the first simulation of nano-scopic neuron electric and magnetic fields to assess the enhancement provided by the nanopillar geometry.Comment: 18 pages including supplementary and references, 12 figure

    Tracking individual nanodiamonds in Drosophila melanogaster embryos

    Get PDF
    Tracking the dynamics of fluorescent nanoparticles during embryonic development allows insights into the physical state of the embryo and, potentially, molecular processes governing developmental mechanisms. In this work, we investigate the motion of individual fluorescent nanodiamonds micro-injected into Drosophila melanogaster embryos prior to cellularisation. Fluorescence correlation spectroscopy and wide-field imaging techniques are applied to individual fluorescent nanodiamonds in blastoderm cells during stage 5 of development to a depth of ~40 \mu m. The majority of nanodiamonds in the blastoderm cells during cellularisation exhibit free diffusion with an average diffusion coefficient of (6 ±\pm 3) x 103^{-3} \mu m2^2/s, (mean ±\pm SD). Driven motion in the blastoderm cells was also observed with an average velocity of 0.13 ±\pm 0.10 \mu m/s (mean ±\pm SD) \mu m/s and an average applied force of 0.07 ±\pm 0.05 pN (mean ±\pm SD). Nanodiamonds in the periplasm between the nuclei and yolk were also found to undergo free diffusion with a significantly larger diffusion coefficient of (63 ±\pm 35) x103^{-3} \mu m2^2/s (mean ±\pm SD). Driven motion in this region exhibited similar average velocities and applied forces compared to the blastoderm cells indicating the transport dynamics in the two cytoplasmic regions are analogous.Comment: 20 pages, 6 figure

    Nanomechanical sensing using spins in diamond

    Full text link
    Nanomechanical sensors and quantum nanosensors are two rapidly developing technologies that have diverse interdisciplinary applications in biological and chemical analysis and microscopy. For example, nanomechanical sensors based upon nanoelectromechanical systems (NEMS) have demonstrated chip-scale mass spectrometry capable of detecting single macromolecules, such as proteins. Quantum nanosensors based upon electron spins of negatively-charged nitrogen-vacancy (NV) centers in diamond have demonstrated diverse modes of nanometrology, including single molecule magnetic resonance spectroscopy. Here, we report the first step towards combining these two complementary technologies in the form of diamond nanomechanical structures containing NV centers. We establish the principles for nanomechanical sensing using such nano-spin-mechanical sensors (NSMS) and assess their potential for mass spectrometry and force microscopy. We predict that NSMS are able to provide unprecedented AC force images of cellular biomechanics and to, not only detect the mass of a single macromolecule, but also image its distribution. When combined with the other nanometrology modes of the NV center, NSMS potentially offer unparalleled analytical power at the nanoscale.Comment: Errors in the stress susceptibility parameters present in the original arXiv version have been correcte

    Congenital tumors: imaging when life just begins

    Get PDF
    BACKGROUND: The technical developments of imaging methods over the last 2 decades are changing our knowledge of perinatal oncology. Fetal ultrasound is usually the first imaging method used and thus constitutes the reference prenatal study, but MRI seems to be an excellent complementary method for evaluating the fetus. The widespread use of both techniques has increased the diagnosis rates of congenital tumors. During pregnancy and after birth, an accurate knowledge of the possibilities and limits of the different imaging techniques available would improve the information obtainable, thus helping the medical team to make the most appropriate decisions about therapy and to inform the family about the prognosis. CONCLUSION: In this review article, we describe the main congenital neoplasms, their prognosis and their imaging characteristics with the different pre- and postnatal imaging methods available

    Author Correction: Expanded encyclopaedias of DNA elements in the human and mouse genomes

    Get PDF
    Online Correction for: https://doi.org/10.1038/s41586-020-2493-4 | Erratum for https://bura.brunel.ac.uk/handle/2438/21299In the version of this article initially published, two members of the ENCODE Project Consortium were missing from the author list. Rizi Ai (Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA) and Shantao Li (Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA) are now included in the author list. These errors have been corrected in the online version of the article : 'Expanded encyclopaedias of DNA elements in the human and mouse genomes'.https://www.nature.com/articles/s41586-021-04226-3https://www.nature.com/articles/s41586-021-04226-
    corecore