135 research outputs found

    Anti-obesity effect of the CB2 receptor agonist JWH-015 in diet-induced obese mice

    Get PDF
    The cannabinoid receptor 2 (CB2) is well known for its immune modulatory role. However, recent localisation of CB2 receptors in metabolically active tissue suggests that the CB2 receptor plays a significant role in energy homeostasis. This study was designed to investigate the impact of chronic CB2 receptor stimulation on food intake, body weight and mood. Lean male C57BL/6 mice were injected i.p. with the selective CB2 receptor agonist, JWH-015 (0.0, 1.0, 5.0 and 10.0 mg kg-1) to establish dose response parameters. Mice made obese following exposure to a diet consisting of 19.4 MJ/kg (4641 Kcal/kg) of energy (19.0% protein, 21.0% total fat, 4.7% crude fiber, and 4.7% AD fiber were given either vehicle or 10 mg/kg JWH-015. Impact on mood, food intake, body weight, plasma metabolites, expression of key metabolic proteins in the brown adipose tissue (BAT) and white adipose tissue (WAT), and markers of inflammation were measured. High dose (10 mg/kg) JWH-015 reduced food intake after 1, 2, 4, and 24 h in lean mice. When given to diet induced obese (DIO) mice, a 10 mg/kg dose of JWH-015 significantly reduced body weight compared to vehicle. This dose led to a shift in markers of lipid metabolism and inflammation in WAT consistent with lipolysis and improved immune response. Furthermore, JWH-015 (10 mg/kg) produced a transient reduction in food intake and significant reduction in fat mass and adipocyte cell size. Importantly, JWH-015 produced an anxiolytic response in the elevated plus maze while having no effect on immobility time in the forced swim test. It should be noted that though the 10 mg/kg dose produced positive effects on the obese state, the possibility that these effects are mediated via non-CB2 receptor mechanisms cannot be ruled out. These results demonstrate a role for CB2 receptors in modulating energy homeostasis and obesity associated metabolic pathologies in the absence of any adverse impact on mood

    Broadband enhancement of light emission in silicon slot waveguides

    Get PDF
    We investigate the light emission properties of electrical dipole emitters inside 2-dimensional (2D) and 3-dimensional (3D) silicon slot waveguides and evaluate the spontaneous emission enhancement (F_p) and waveguide coupling ratio (β). Under realistic conditions, we find that greater than 10-fold enhancement in F_p can be achieved, together with a β as large as 0.95. In contrast to the case of high Q optical resonators, such performance enhancements are obtained over a broad wavelength region, which can cover the entire emission spectrum of popular optical dopants such as Er. The enhanced luminescence efficiency and the strong coupling into a limited set of well-defined waveguide modes enables a new class of power-efficient, CMOS-compatible, waveguide-based light sources

    CD11d antibody treatment improves recovery in spinal cord-injured mice

    Get PDF
    Acute administration of a monoclonal antibody (mAb) raised against the CD11d subunit of the leukocyte CD11d/CD18 integrin after spinal cord injury (SCI) in the rat greatly improves neurological outcomes. This has been chiefly attributed to the reduced infiltration of neutrophils into the injured spinal cord in treated rats. More recently, treating spinal cord-injured mice with a Ly-6G neutrophil-depleting antibody was demonstrated to impair neurological recovery. These disparate results could be due to different mechanisms of action utilized by the two antibodies, or due to differences in the inflammatory responses between mouse and rat that are triggered by SCI. To address whether the anti-CD11d treatment would be effective in mice, a CD11d mAb (205C) or a control mAb (1B7) was administered intravenously at 2, 24, and 48 h after an 8-g clip compression injury at the fourth thoracic spinal segment. The anti-CD11d treatment reduced neutrophil infiltration into the injured mouse spinal cord and was associated with increased white matter sparing and reductions in myeloperoxidase (MPO) activity, reactive oxygen species, lipid peroxidation, and scar formation. These improvements in the injured spinal cord microenvironment were accompanied by increased serotonin (5-HT) immunoreactivity below the level of the lesion and improved locomotor recovery. Our results with the 205C CD11d mAb treatment complement previous work using this anti-integrin treatment in a rat model of SCI. © 2012, Mary Ann Liebert, Inc

    CD11d integrin blockade reduces the systemic inflammatory response syndrome after traumatic brain injury in rats

    Get PDF
    Traumatic CNS injury triggers a systemic inflammatory response syndrome (SIRS), in which circulating inflammatory cells invade body organs causing local inflammation and tissue damage. We have shown that the SIRS caused by spinal cord injury is greatly reduced by acute intravenous treatment with an antibody against the CD11d subunit of the CD11d/CD18 integrin expressed by neutrophils and monocyte/macrophages, a treatment that reduces their efflux from the circulation. Traumatic brain injury (TBI) is a frequently occurring injury after motor vehicle accidents, sporting and military injuries, and falls. Our studies have shown that the anti-CD11d treatment diminishes brain inflammation and oxidative injury after moderate or mild TBI, improving neurological outcomes. Accordingly, we examined the impact of this treatment on the SIRS triggered by TBI. The anti-CD11d treatment was given at 2. h after a single moderate (2.5-3.0. atm) or 2 and 24. h after each of three consecutive mild (1.0-1.5. atm) fluid percussion TBIs. Sham-injured, saline-treated rats served as controls. At 24. h, 72. h, and 4 or 8. weeks after the single TBI and after the third of three TBIs, lungs of rats were examined histochemically, immunocytochemically and biochemically for downstream effects of SIRS including inflammation, tissue damage and expression of oxidative enzymes. Lung sections revealed that both the single moderate and repeated mild TBI caused alveolar disruption, thickening of inter-alveolar tissue, hemorrhage into the parenchyma and increased density of intra-and peri-alveolar macrophages. The anti-CD11d treatment decreased the intrapulmonary influx of neutrophils and the density of activated macrophages and the activity of myeloperoxidase after these TBIs. Moreover, Western blotting studies showed that the treatment decreased lung protein levels of oxidative enzymes gp91phox, inducible nitric oxide synthase and cyclooxygenase-2, as well as the apoptotic pathway enzyme caspase-3 and levels of 4-hydroxynonenal-bound proteins (an indicator of lipid peroxidation). Decreased expression of the cytoprotective transcription factor Nrf2 reflected decreased lung oxidative stress. Anti-CD11d treatment also diminished the lung concentration of free radicals and tissue aldehydes.In conclusion, the substantial lung component of the SIRS after single or repeated TBIs is significantly decreased by a simple, minimally invasive and short-lasting anti-inflammatory treatment

    The effectiveness of the anti-CD11d treatment is reduced in rat models of spinal cord injury that produce significant levels of intraspinal hemorrhage

    Get PDF
    We have previously reported that administration of a CD11d monoclonal antibody (mAb) improves recovery in a clip-compression model of SCI. In this model the CD11d mAb reduces the infiltration of activated leukocytes into the injured spinal cord (as indicated by reduced intraspinal MPO). However not all anti-inflammatory strategies have reported beneficial results, suggesting that success of the CD11d mAb treatment may depend on the type or severity of the injury. We therefore tested the CD11d mAb treatment in a rat hemi-contusion model of cervical SCI. In contrast to its effects in the clip-compression model, the CD11d mAb treatment did not improve forelimb function nor did it significantly reduce MPO levels in the hemi-contused cord. To determine if the disparate results using the CD11d mAb were due to the biomechanical nature of the cord injury (compression SCI versus contusion SCI) or to the spinal level of the injury (12th thoracic level versus cervical) we further evaluated the CD11d mAb treatment after a T12 contusion SCI. In contrast to the T12 clip compression SCI, the CD11d mAb treatment did not improve locomotor recovery or significantly reduce MPO levels after T12 contusion SCI. Lesion analyses revealed increased levels of hemorrhage after contusion SCI compared to clip-compression SCI. SCI that is accompanied by increased intraspinal hemorrhage would be predicted to be refractory to the CD11d mAb therapy as this approach targets leukocyte diapedesis through the intact vasculature. These results suggest that the disparate results of the anti-CD11d treatment in contusion and clip-compression models of SCI are due to the different pathophysiological mechanisms that dominate these two types of spinal cord injuries

    Cofilin interacts with ClC-5 and regulates albumin uptake in proximal tubule cell lines

    Get PDF
    Receptor-mediated endocytosis is a constitutive high capacity pathway for the reabsorption of proteins from the glomerular filtrate by the renal proximal tubule. ClC-5 is a voltage-gated chloride channel found in the proximal tubule where it has been shown to be essential for protein uptake, based on evidence from patients with Dent's disease and studies in ClC-5 knockout mice. To further delineate the role of ClC-5 in albumin uptake, we performed a yeast two-hybrid screen with the C-terminal tail of ClC-5 to identify any interactions of the channel with proteins involved in endocytosis. We found that the C-terminal tail of ClC-5 bound the actin depolymerizing protein, cofilin, a result that was confirmed by GST-fusion pulldown assays. In cultured proximal tubule cells, cofilin was distributed in nuclear, cytoplasmic, and microsomal fractions and co-localized with ClC-5. Phosphorylation of cofilin by overexpressing LIM kinase 1 resulted in a stabilization of the actin cytoskeleton. Phosphorylation of cofilin in two proximal tubule cell models (porcine renal proximal tubule and opossum kidney) was also accompanied by a pronounced inhibition of albumin uptake. This study identifies a novel interaction between the C-terminal tail of ClC-5 and cofilin, an actin-associated protein that is crucial in the regulation of albumin uptake by the proximal tubule

    Exploration of the altar painting “Sacra Conversazione” by Bernardino Licinio from the church of St. Francis in Krk

    Get PDF
    Slika Sacra Conversazione Bernardina Licinija iz crkve Sv. Franje Asiškog u Krku izrađena je tehnikom masne tempere na dasci. Velike dimenzije slike u kombinaciji sa smještajem na visini uz teška oštećenja nosioca i slikanih slojeva, zahtijevala su izvođenje konzervatorsko-restauratorskih istraživanja in situ. Tom je prilikom prvi put u Hrvatskoj izvan radionice, na terenu, primijenjena vizualizacija oltarne pale velikog formata računalnom radiografjom. Omogućila je uvid u stanje nosioca i slikanih slojeva, smanjila rizik demontaže i transporta te usmjerila daljnje konzervatorsko-restauratorske radove.The altar pala Sacra Conversazione, by Bernardino Licinio (Venice, 1485/1489–c. 1550), is located on the main altar of the Church of St. Francis in the town of Krk. It was painted in 1531 in tempera grassa on board. In contrast to the later Venetian Sacra Conversazione by the same artist, painted in 1535, the Krk pala is almost completely unknown in professional literature; it is mentioned only in some older literature, with a short iconographic description. Due to the painting’s large dimensions (280x195 cm) and weight, its location high on the main altar, and the significant damage to the painted layers, its wooden base and the support system, the conservation-restoration explorations were carried out in situ, at the church altar. This significantly reduced the possibility of additional damage being incurred during dismantling and transport. The artefact was filmed in the visible, UV and IR parts of the spectrum, and under slanted light. Samples of pigment and binding material were analysed in a laboratory, and the order of layers was established. A particularly interesting phase of the conservation-restoration exploration was the visualization of the artefact by computer radiography. This method, created and developed for medical purposes, is being applied ever more often in restoration for exploring and documenting artefacts. Prior to this occasion, it had not been used in Croatia for in situ explorations. The visualization of the Krk pala by computer radiography made it possible to assess the condition of the original painted layer, wooden base and support system, which is normally hidden by the large wall at the back of the altar. The computer radiography uncovered grave and extensive damage to the painting base and the painted layers, but which can be remedied and reconstructed. Exploratory attempts to remove the “secondary” coats from the surface of the original painted layer suggested that several interventions had already been made on the artefact, two of them rather substantial, and they included reduction of the altar painting’s format. The explorations carried out thus far have provided the basic information on this artefact, which will be supplemented by further restoration procedures, and archival and art-historical research

    Atomic characterization of Si nanoclusters embedded in SiO2 by atom probe tomography

    Get PDF
    Silicon nanoclusters are of prime interest for new generation of optoelectronic and microelectronics components. Physical properties (light emission, carrier storage...) of systems using such nanoclusters are strongly dependent on nanostructural characteristics. These characteristics (size, composition, distribution, and interface nature) are until now obtained using conventional high-resolution analytic methods, such as high-resolution transmission electron microscopy, EFTEM, or EELS. In this article, a complementary technique, the atom probe tomography, was used for studying a multilayer (ML) system containing silicon clusters. Such a technique and its analysis give information on the structure at the atomic level and allow obtaining complementary information with respect to other techniques. A description of the different steps for such analysis: sample preparation, atom probe analysis, and data treatment are detailed. An atomic scale description of the Si nanoclusters/SiO2 ML will be fully described. This system is composed of 3.8-nm-thick SiO layers and 4-nm-thick SiO2 layers annealed 1 h at 900°C
    corecore