136 research outputs found

    Individual differences in information integration studies of children’s judgment/decision-making: Combining group with single-subject design via cluster analysis

    Get PDF
    Our work uses experimental methods to test children’s judgment/decision-making (JDM). Experimental work often focuses on task and process analyses at the group level, with individual differences treated as error variability. Here, we describe how to assess/interpret individual differences within experiments using single-subject design. Traditionally, single-subject design appears in single case studies, with issues of generalizability arising. Our approach, in contrast, involves groups of standard size, analyzed at the group and individual subject level. We then group individuals with similar patterns, for conclusions about the existence and contributions of systematic individual differences to development. Our examples here use Information Integration Theory (IIT). Our general perspective, however, could be useful for other experimental paradigms as well

    Striatal dopamine synthesis capacity reflects smartphone social activity

    Get PDF
    Striatal dopamine and smartphone behavior have both been linked with behavioral variability. Here, we leverage day-to-day logs of natural, unconstrained smartphone behavior and establish a correlation between a measure of smartphone social activity previously linked with behavioral variability and a measure of striatal dopamine synthesis capacity using [(18)F]-DOPA PET in (N = 22) healthy adult humans. Specifically, we find that a higher proportion of social app interactions correlates with lower dopamine synthesis capacity in the bilateral putamen. Permutation tests and penalized regressions provide evidence that this link between dopamine synthesis capacity and social versus non-social smartphone interactions is specific. These observations provide a key empirical grounding for current speculations about dopamine's role in digital social behavior

    Electric field measurements in atmospheric-pressure plasma jets

    Get PDF
    Atmospheric pressure non-thermal plasmas are researched for many applications. They became popular with plasma medicine, where restrictions on the plasmas are rigorous - they have to be at room temperature and not transfer significant amount of charge to the target, while still providing a mixture of reactive species, charge, field, to be efficient in medical applications. The intended applications soon extended to the treatment of different types of targets, where it is either important to treat them at atmospheric pressure (e.g. water) or with a plasma at room temperature. Atomic layer deposition is a good example of a traditionally low pressure technology being extended into the atmospheric pressure, and so is plasma catalysis. Another family of applications is in food and agriculture, where plasmas present a promising technology applied to a wide range of surfaces, dielectrics of different permittivities, in atmospheric air but also in humid conditions.The discharges used in these developments very often belong to the family of non-thermal atmospheric pressure plasmas - these are transient discharges, highly non-uniform in both space and time, small-scale (sub-mm), low ionization level, low light output, and most importantly sensitive to their environment. For example, a He plasma jet working in a kHz bullet mode changes its properties when impinging on a target with respect to the case when it expands freely into the ambient atmosphere. This is an important aspect to be kept in mind when bringing non-thermal atmospheric pressure plasmas intoapplications. It is also the motivation for the research presented in this talk. This work focuses on the fundamental properties of non-thermal plasmas such as the electric field, charge density and electron temperature. The work was performed on a non-thermal atmospheric pressure He plasma jet working in a kHz-driven mode with one ionization wave produced per voltage period or pulse. These fundamental properties of the discharge were measured in a freely expanding jet as well as when impinging on targets of different types, from low-permittivity dielectrics such as glass, to water, to metal. The measurements were performed in the plasma plume, but also in a target when a high-permittivity dielectric (er = 56) was used.The results bring one of the first sets of data concerning the E field, electron density and electron temperature, which are relatable to each other through the fact that they were all obtained on the same discharge. The effect of the gas flow speed is significant in the freely expanding jet, showing that the increased flow extends not only the visible length of the plasma plume, but also its electric field profile. In addition, the electron density and temperature were shown to respectively fall and rise within the plasma plume with increasing the distance from the end of the glass capillary.The presence of the target influences the plasma plume in several different ways. For low-permittivity targets, such as plastic or glass, the presence of the target does not significantly influence the plasma properties in the plume, but it does initiate surface discharges belonging to the family of ionization waves. The electric field induced in the target material by those surface ionization waves were measured, both axially, in the direction through the material, and radially. When the permittivity of the target is increased, the surface ionization waves are replaced by one or several return strokes and a significantly altered electric field profile, along with increased electron density and temperature. In the extreme case of the metallic target, combined with much higher electron densities, the duration of the discharge on the metal surface is extended to a microsecond. The work shows not only that the presence of the target influences the plasma, but that the properties of the target determine the plasma parameters, also in the gas phase

    Improved standardization of flow cytometry diagnostic screening of primary immunodeficiency by software-based automated gating

    Get PDF
    Background Multiparameter flow cytometry (FC) is essential in the diagnostic work-up and classification of primary immunodeficiency (PIDs). The EuroFlow PID Orientation tube (PIDOT) allows identification of all main lymphocyte subpopulations in blood. To standardize data analysis, tools for Automated Gating and Identification (AG&I) of the informative cell populations, were developed by EuroFlow. Here, we evaluated the contribution of these innovative AG&I tools to the standardization of FC in the diagnostic work-up of PID, by comparing AG&I against expert-based (EuroFlow-standardized) Manual Gating (MG) strategy, and its impact on the reproducibility and clinical interpretation of results. Methods FC data files from 44 patients (13 CVID, 12 PID, 19 non-PID) and 26 healthy donor (HD) blood samples stained with PIDOT were analyzed in parallel by MG and AG&I, using Infinicyt (TM) software (Cytognos). For comparison, percentage differences in absolute cell counts/mu L were calculated for each lymphocyte subpopulation. Data files showing differences >20% were checked for their potential clinical relevance, based on age-matched percentile (p5-p95) reference ranges. In parallel, intra- and inter-observer reproducibility of MG vs AG&I were evaluated in a subset of 12 samples. Results The AG&I approach was able to identify the vast majority of lymphoid events (>99%), associated with a significantly higher intra- and inter-observer reproducibility compared to MG. For most HD (83%) and patient (68%) samples, a high degree of agreement (<20% numerical differences in absolute cell counts/mu L) was obtained between MG and the AG&I module. This translated into a minimal impact (<5% of observations) on the final clinical interpretation. In all except three samples, extended expert revision of the AG&I approach revealed no error. In the three remaining samples aberrant maturation and/or abnormal marker expression profiles were seen leading in all three cases to numerical alarms by AG&I. Conclusion Altogether, our results indicate that replacement of MG by the AG&I module would be associated with a greater reproducibility and robustness of results in the diagnostic work-up of patients suspected of PID. However, expert revision of the results of AG&I of PIDOT data still remains necessary in samples with numerical alterations and aberrant B- and T-cell maturation and/or marker expression profiles

    Improved standardization of flow cytometry diagnostic screening of primary immunodeficiency by software-based automated gating

    Get PDF
    BackgroundMultiparameter flow cytometry (FC) is essential in the diagnostic work-up and classification of primary immunodeficiency (PIDs). The EuroFlow PID Orientation tube (PIDOT) allows identification of all main lymphocyte subpopulations in blood. To standardize data analysis, tools for Automated Gating and Identification (AG&I) of the informative cell populations, were developed by EuroFlow. Here, we evaluated the contribution of these innovative AG&I tools to the standardization of FC in the diagnostic work-up of PID, by comparing AG&I against expert-based (EuroFlow-standardized) Manual Gating (MG) strategy, and its impact on the reproducibility and clinical interpretation of results.MethodsFC data files from 44 patients (13 CVID, 12 PID, 19 non-PID) and 26 healthy donor (HD) blood samples stained with PIDOT were analyzed in parallel by MG and AG&I, using Infinicyt (TM) software (Cytognos). For comparison, percentage differences in absolute cell counts/mu L were calculated for each lymphocyte subpopulation. Data files showing differences >20% were checked for their potential clinical relevance, based on age-matched percentile (p5-p95) reference ranges. In parallel, intra- and inter-observer reproducibility of MG vs AG&I were evaluated in a subset of 12 samples.ResultsThe AG&I approach was able to identify the vast majority of lymphoid events (>99%), associated with a significantly higher intra- and inter-observer reproducibility compared to MG. For most HD (83%) and patient (68%) samples, a high degree of agreement (<20% numerical differences in absolute cell counts/mu L) was obtained between MG and the AG&I module. This translated into a minimal impact (<5% of observations) on the final clinical interpretation. In all except three samples, extended expert revision of the AG&I approach revealed no error. In the three remaining samples aberrant maturation and/or abnormal marker expression profiles were seen leading in all three cases to numerical alarms by AG&I.ConclusionAltogether, our results indicate that replacement of MG by the AG&I module would be associated with a greater reproducibility and robustness of results in the diagnostic work-up of patients suspected of PID. However, expert revision of the results of AG&I of PIDOT data still remains necessary in samples with numerical alterations and aberrant B- and T-cell maturation and/or marker expression profiles.Stemcel biology/Regenerative medicine (incl. bloodtransfusion

    International differences in employee silence motives: Scale validation, prevalence, and relationships with culture characteristics across 33 Countries

    Get PDF
    Employee silence, the withholding of work-related ideas, questions, or concerns from someone who could effect change, has been proposed to hamper individual and collective learning as well as the detection of errors and unethical behaviors in many areas of the world. To facilitate cross-cultural research, we validated an instrument measuring four employee silence motives (i.e., silence based on fear, resignation, prosocial, and selfish motives) in 21 languages. Across 33 countries (N = 8,222) representing diverse cultural clusters, the instrument shows good psychometric properties (i.e., internal reliabilities, factor structure, measurement invariance). Results further revealed similarities and differences in the prevalence of silence motives between countries, but did not necessarily support cultural stereotypes. To explore the role of culture for silence, we examined relationships of silence motives with the societal practices cultural dimensions from the GLOBE Program. We found relationships between silence motives and power distance, institutional collectivism, and uncertainty avoidance. Overall, the findings suggest that relationships between silence and cultural dimensions are more complex than commonly assumed. We discuss the explanatory power of nations as (cultural) units of analysis, our social scientific approach, the predictive value of cultural dimensions, and opportunities to extend silence research geographically, methodologically, and conceptuallyinfo:eu-repo/semantics/publishedVersio

    Neural network-based exploration of construct validity for russian version of the 10-item big five inventory

    Get PDF
    peer reviewedThis study aims to present a new method of exploring construct validity of questionnaires based on neural network. Using this test we further explore convergent validity for Russian adaptation of TIPI (Ten-Item Personality Inventory by Gosling, Rentfrow, and Swann). Due to small number of questions TIPI-RU can be used as an express-method for surveying large number of people, especially in the Internet-studies. It can be also used with other translations of the same questionnaire in the intercultural studies. The neural network test for construct validity can be used as more convenient substitute for path model
    • …
    corecore