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SUMMARY

Striatal dopamine and smartphone behavior have both been linked with behav-
ioral variability. Here, we leverage day-to-day logs of natural, unconstrained
smartphone behavior and establish a correlation between a measure of smart-
phone social activity previously linked with behavioral variability and a measure
of striatal dopamine synthesis capacity using [18F]-DOPA PET in (N = 22) healthy
adult humans. Specifically, we find that a higher proportion of social app interac-
tions correlates with lower dopamine synthesis capacity in the bilateral putamen.
Permutation tests and penalized regressions provide evidence that this link be-
tween dopamine synthesis capacity and social versus non-social smartphone in-
teractions is specific. These observations provide a key empirical grounding for
current speculations about dopamine’s role in digital social behavior.

INTRODUCTION

Striatal dopamine plays key roles in cognition and behavior. Beyond gross motor and cognitive distur-

bances associated with cell loss in Parkinson disease, striatal dopamine tone has been linked with

increasing vigor (Niv et al., 2007) and regulating behavioral variability (Costa, 2011; Galea et al., 2013; Mi-

khael et al., 2021) as a function of reward context. How dopamine function relates to naturalistic behavior

outside the confines of laboratory settings and precisely controlled reward schemes, however, is rarely

studied.

Smartphones offer a powerful tool for examining rich, spontaneous, real-world behavior, yet studies have

only begun to leverage their potential (Reeves et al., 2020). In one recent, intriguing example, naturalistic

smartphone behaviors correlated with individual differences in sensorimotor variability in a lab-based task

(Balerna and Ghosh, 2018). Specifically, passively recorded logs of smartphone interactions revealed that

participants who touched their screens more frequently in their daily life were also less variable in highly

constrained button tapping in the lab. Interestingly, however, participants touching social apps more

frequently showed ‘‘greater’’ sensorimotor variability. Why low-level motor function should track social

versus non-social smartphone interactions remains unclear. Yet, given prior evidence implicating dopa-

mine transmission in (social context related) behavioral variability (e.g., Galea et al., 2013; Leblois et al.,

2010; MacDonald et al., 2012) and speculations about dopamine’s role in social media use (Burhan and

Moradzadeh, 2020), we here ask whether smartphone social interactions index individual differences in

striatal dopamine function.

In this study, we recorded touchscreen interactions to assess a relationship between smartphone social

behavior—proxied by the app in use—and striatal dopamine function (see STAR Methods). Specifically,

healthy young adult participants (N = 22 from a larger study, see STAR Methods; ages 18 to 33; 9 women)

completed a ([18F]-DOPA) positron emission tomography (PET) scan to quantify their striatal dopamine syn-

thesis capacity. We then examined touchscreen logs over weeks (median: 32 days, 10th–90th percentile: 26–

50 days) of normal, daily use, outside of the PET scanner. Our analysis focused on measures linked with mo-

tor variability from the prior smartphone monitoring study (Balerna and Ghosh, 2018), including overall us-

age (interactions per day) and proportion of social interactions (proportion of all interactions that occurred

on social apps—e.g. chat and messenger apps). Given prior work linking striatal dopamine function and

motoric vigor (Niv et al., 2007), we also analyzed peak daily smartphone interaction speed (fastest inter-

touch intervals performed every day; see Figure S1 for descriptive statistics).
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Figure 1. Whole-brain regression of dopamine synthesis capacity on speed, daily usage, and proportion of social

interactions

(A) Whole-brain individual difference regression weights of dopamine synthesis capacity predicted by smartphone

interaction speed, interactions per day, and proportion of social interactions. White boundaries encompass voxels at

(uncorrected) p < 0.001, indicating that bilateral putamen synthesis capacity reflects proportion of social interactions;

display format from (Zandbelt, 2017).

(B) Proportion social interaction clusters (PFWE < 0.05, small volume correction) resulting frompermutation-based, threshold-free

cluster enhancement (Smith and Nichols, 2009). Clusters overlap an independently defined segmentation of the striatum

including thedorsal andmedial caudatenucleus (darkgreen), anterior andposteriorputamen(yellow-green), andventral striatum

(pale yellow). Note that similar clusters were obtained following thresholded (p < 0.001) cluster formation (see Figure S2).
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RESULTS

After aligning participants’ PET scans, we performed a voxel-wisemultiple regression to ask where each of these

three measures reflected individual differences in dopamine synthesis capacity as quantified via Gjedde-Patlak

analyses (Patlak et al., 1983). The fitted model (Figure 1A) revealed positive regression weights of striatal dopa-

mine synthesis capacity on our proxy of vigor (interaction speed—fastest daily inter-touch intervals), negative

weights on interactions per day, and negative weights on the proportion of social interactions.

Relationshipswith speedand interactions per day did not survive cluster corrections. However, the negative rela-

tionship between the proportion of social interactions and dopamine synthesis capacity was reliable in bilateral

posterior putamen. Both threshold-free (Figure 1B) and thresholded cluster forming methods (Figure S3)

confirmed a reliable correlation in the putamen in both hemispheres. We restricted our search to a dopa-

mine-rich region encompassing the midbrain and striatum (Figure S2; (Sescousse et al., 2018)) and thus retained

clusters falling below threshold of PFWE < 0.05, small volume corrected (supplemental information).

To further probe the relationship with the proportion of social interactions, we extracted mean dopamine syn-

thesis capacity values from all voxels within the bilateral posterior putamen as defined by an independent, func-

tional connectivity-basedparcellation of the striatum (Piray et al., 2017). A robustmultiple regression confirmeda

negative relationship between individuals’ mean dopamine synthesis capacity and the z-scored proportion of

their smartphone interactions devoted to social apps (Figure 2A; b = �1.5 3 10�3 min�1, t(18) = �4.8, p =

1.3 3 10�4) surviving correction for multiple comparisons across the five independently defined striatal sub-re-

gions (PBonferroni = 6.5 3 10�4). Permutation testing confirmed that the slope of the relationship between

dopamine synthesis capacity and social app categorization was extreme compared to 1000 random
2 iScience 24, 102497, May 21, 2021
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Figure 2. Individual differences in proportion of social app interactions covary with dopamine synthesis capacity

in the bi-lateral posterior putamen

(A) Inverse relationship between individual differences in proportion social interactions and dopamine synthesis capacity

(adjusted response plot of the multiple regression including speed and daily usage; inset shows unadjusted data).

Dashed line is the estimated linear fit.

(B) The observed multiple regression slope (red) is extreme compared to the relationship observed in on 1000 random

permutations of app category labels (gray).
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permutations of social versus non-social app category labels (Figure 2B). Neither speed (b = 7.93 10�4 min�1,

t(18) = 2.3, p = 0.031) nor overall smartphone usage (b =�3.23 10�4 min�1, t(18) =�1.0, p = 0.32) survivedmul-

tiple comparison corrections in their relationship to dopamine synthesis capacity in the bilateral posterior puta-

men. Collectively, this multiple regression model explains considerable between-subjects variance in posterior

putamen dopamine synthesis capacity (R2 = 0.55).

A key feature of social activity is that it relies heavily on text messaging, raising the possibility that the

observed relationship reflected intensive keypad typing rather than social interactions. However, several

non-social apps (e.g., Notes) also rely on typing. Therefore, we created a category of ‘‘typing’’ apps to con-

trol for this effect. We added typing apps—along with age and gender of the participant—as explanatory

variables in a lasso regression for parameter selection. Social activity survived the lasso regression (1000

bootstraps; Figure S3), suggesting that the amount of typing, per se, cannot explain the link between social

activity and dopamine synthesis capacity. Thus, social interactions track between-subjects variance in

dopamine synthesis capacity better than typing, age, and gender.

DISCUSSION

We find a strong and focal relationship between dopamine synthesis capacity in the bilateral posterior pu-

tamen and smartphone social app use, which is also specific to social app use. This result supports the hy-

pothesis that smartphone-based social behavior indexes striatal dopamine function. This result moreover

highlights the potential for using naturalistic, passively tracked smartphone data to make inferences about

individual differences in neuromodulatory function, although clearly replication studies are necessary,

particularly given the small sample size (Button et al., 2013).

Our result also informs current speculations about digital social behavior and striatal dopamine function (Park

and Kim, 2017; Turel et al., 2014). Consider, for example, problematic social media use. Excessive social media

use has been associated with reduced ventral striatal gray matter volume (He et al., 2017; Montag et al., 2018),

suggesting that problematic digital behavior (as in internet addiction) is driven by aberrant reward processing

structures. We find a higher proportion of social app usage among those with lower dopamine synthesis capac-

ity. Our results dovetail, albeit in a healthy sample, with the findings that individuals with attention deficit hyper-

activity disorder have both lower dopamine synthesis capacity (Ernst et al., 1998; Ludolph et al., 2008) and are

more prone to social media addiction (Andreassen et al., 2016). The fact that one of the attention deficit hyper-

activity disorder studies showed reduced dopamine function specifically in the putamen (Ludolph et al., 2008)

converges with the locus of our result—although we did not a priori predict social app use to relate to putamen

dopamine function over other striatal sub-regions. Interestingly, ‘‘higher’’ rather than ‘‘lower’’ dopamine synthe-

sis capacity has been associated with other behavioral addictions (e.g. gambling [Holst et al., 2018]; though see

[Majuri et al., 2017]) andbehavioral disinhibition (Lawrence and Brooks, 2014) indicating that dopamine synthesis
iScience 24, 102497, May 21, 2021 3
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capacity may interact with other factors in conferring risk for problematic social media use. One such factor may

be D2 receptor density, which is positively correlated with trait extraversion in healthy adults (Baik et al., 2012).

In sum, our findings highlight the promise of naturalistic smartphone behavioral data both for elucidating

rich, real-world social behavior and the neural mechanisms that support them.

Limitations of the study

Our discovery, while promising, warrants future replication studies to confirm that proportion social interactions

is related to dopamine synthesis capacity specifically in the posterior putamen and not to other regions like the

ventral striatum. We note that low sample size prevents strong inferences about one striatal sub-region over

another, especially considering the moderate correlation in dopamine synthesis capacity between regions

(for the posterior putamen and ventral striatum rPearson = 0.57). Thus, replication studies with larger sample sizes

are critical. Multi-model imaging techniques may also prove especially informative: e.g. PET studies quantifying

multiple facets of striatal dopamine signaling including synthesis capacity and D2 receptor density (Berry et al.,

2017). Functional MRI can also provide critical information about the functional networks to which striatal sub-

regions belong, with implications for anhedonia and impulsivity (Hamilton et al., 2018; Piray et al., 2017).
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Smartphone derivative and analyzed data This paper https://doi.org/10.34973/vjwg-0214

List of Social versus Non-social Apps Arko Ghosh Table S1

Software and algorithms

FreeSurfer v7.1 Laboratory for Computational Neuroimaging https://surfer.nmr.mgh.harvard.edu/

Statistical Parameteric Mapping v12 The Wellcome Center for Human

Neuroimaging

https://www.fil.ion.ucl.ac.uk/spm/

MATLAB vR2020b MathWorks https://www.mathworks.com/

products/matlab.html

TapCounter QuantActions https://quantactions.com/

Slice Display Bram Zandbelt 10.6084/m9.figshare.4742866

R v4.0.3 The Comprehensive R Archive Network https://cran.r-project.org/

clickR v0.5.27 David Hervas Marin https://cran.r-project.org/

MASS package v7.3-53.1 Brian Ripley http://www.stats.ox.ac.uk/pub/MASS4/
RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to the lead contact, Andrew Westbrook (andrew.

westbrook@brown.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Smartphone derivative measures links to PET measures and analysis code can all be found in the Donders

Data Repository at https://doi.org/10.34973/vjwg-0214.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We invited participants from a pool of healthy, young adults in the Radboud University community (Nijmegen,

Netherlands) who had completed a PET scan as part of a larger pharmaco-imaging study (N= 96 participants) on

the influence of catecholamines on cognitive control. A full list of exclusion criteria and studymeasures collected

for the larger study is registered at https://www.trialregister.nl/trial/5959. The study was approved by the

regional research ethics committee (Commissie Mensgebonden Onderzoek, region Arnhem-Nijmegen; 2016/

2646; ABR: NL57538.091.16). In total, N = 27 participants responded that they were willing and able to partici-

pate. After giving informed consent, a proprietary app (TapCounter, QuantActions; Lausanne, Switzerland) was

installed on their smartphone (software limited to non-iPhones only) and activated so that their smartphone use

data (personal interactions with the device) could be passively recorded and uploaded to a cloud-based server.

We initially planned to record approximately 3 weeks of data for all participants, but participants had inde-

pendent control over when the app was removed from their phone, thus the recording interval varied. Data

loss on some days for some participants also meant that final recording interval varied across participants

with total usable days ranging from 8 to 467 days (median: 32 days, 10th–90th percentile: 26–50 days). Also, 5

participants were subsequently excluded due to excessive data loss from logging and connectivity issues

and thus our final sample size was N = 22. Our final sample of N = 22 were ages 18 to 33; 9 women). The lag

between PET scan and app installation ranged from 92 days prior to 658 days after the PET scan (mean lag

was 328 days after the PET scan).
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METHOD DETAILS

Smartphone variables and their distributions

Smartphone data contained the following raw values: the time-stamp of the touchscreen interaction, the

label of the app in use at the time of the interaction, and screen on/off times. From these, we computed

our three measures of interest: 1) smartphone usage, 2) proportion of social interactions and 3) interaction

speed. Smartphone usage was quantified as the square root-transformed total number of interactions to

reduce non-normality, divided by the number of days of recording. Interaction speed was estimated as fol-

lows: the shortest 25th percentile of the inter-event intervals was accumulated in 24 h bins, the inverse of the

median of these accumulated values was used.

Participants’ scores for our three key independent variables (speed, overall usage, and proportion social

touches) are all distributed over a wide range, and within-subject variance is consistent across participants

when the data are accumulated over a day (Figure S1).

Apps and their classification

App labels were used to determine the proportion of social interactions: number of interactions on social apps

versus all interactions. Apps were rated as social if: 1) their main purpose was for communication among users, 2)

the app facilitates interactions throughmessages, posts, and/or chat, 3) users can create personal profiles, 4) the

app facilitates the development of a social network, 5) the app is intended tobeusedwith a social app, or cannot

be used without one. Otherwise, an app was classified as non-social (e.g. news or weather apps).

All apps used in the study were rated by hand as either social or non-social, and examined for inter-rater

consistency. To resolve any inconsistent classifications across raters, the raters first attempted consensus

by sharing their reasoning and when a consensus was not possible the app was labeled as uncategorized.

As noted, a complete list of apps can be downloaded as Table S1.

Dopamine synthesis capacity measurement

Dopamine synthesis capacity was measured using the radiotracer [18F]-fluoro-DOPA (F-DOPA) and a Siemens

mCT PET-CT scanner (4 x 4 mm voxels, 5 mm slice thickness). Participants received 150mg carbidopa to reduce

decarboxylase activity and 400mg entacapone to reduce peripheral COMT activity, 50minutes prior to the start

of the scan. Participants were administered a low dose CT scan used for attenuation correction, followed by a

bolus injection of 185 MBq (5 mCi) max F-DOPA into the antecubital vein. Over 89 minutes, we collected 4 1-

minute frames, 3 2-minute frames, 3 3-minute frames, and 14 5-minute frames. Data were reconstructed with

weighted attenuation correction, time-of-flight correction, correction for scatter, and smoothed with a 3 mm

full-width-half-max kernel. Presynaptic dopamine synthesis capacity was quantified per voxel as F-DOPA influx

rate (Ki; min-1) using Gjedde-Patlak linear graphical analysis (Patlak et al., 1983) for the frames of 24—89minutes,

with cerebellar gray matter as the reference region, which was obtained via FreeSurfer segmentation. Ki maps

were spatially normalized to MNI space and smoothed using an 8 mm FWHM Gaussian kernel.

FreeSurfer segmentation was performed using high-resolution anatomical MRI scans collected on a sepa-

rate date from the PET scan. Specifically, participants completed a structural T1-weighted magnetization

prepared, rapid-acquisition gradient echo sequence MRI scan (TR 2300 ms, TE 3.03 ms, flip angle 8�, 192
sagittal slices, 1 mm thick, field of view 256 mm, voxel size 1x1x1 mm), scanned by a Siemens MAGNETOM

Skyra 3 Tesla MR scanner.

QUANTIFICATION AND STATISTICAL ANALYSIS

Voxel-wise multiple regression and correction

We identifiedbi-lateral clusters of the putamen surviving FWEp<0.05 small volume correction formultiple com-

parisons. For our analyses, the small volumewas defined by amask of dopamine-rich regions encompassing the

midbrain, brainstem, and the basal ganglia (Figure S2). Themask was defined from the distribution of dopamine

synthesis capacity signal across the full sample from the larger parent study of N = 94 participants receiving a

[18F]-DOPA PET scan (N = 100 were recruited; 6 were removed for data loss and participant drop outs). Specif-

ically, following (Sescousse et al., 2018), wedefined a volumeencompassing all voxels where dopamine synthesis

capacity was 3 standard deviations above themean signal across the whole brain.While dopamine synthesis ca-

pacity can be measured outside of this region, the signal is much stronger in the volume than elsewhere and

hence we reasoned that any relationship with smartphone behavior would arise within this small volume.
iScience 24, 102497, May 21, 2021 7
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Cluster corrected whole-brain analysis

Complementing our threshold-free cluster enhancement methods in the main text, we also used classic

threshold cluster forming methods. We used a seed threshold of p < 0.001, with 10 voxels extent, then

applied small volume correction and retained clusters surviving FWE at PFWE < 0.05. The resulting clusters

(Figure S3) were very similar to those obtained by threshold-free cluster enhancement.
Multiple regression on dopamine synthesis averages

After extracting region-averaged dopamine synthesis capacity in striatal subregions, we regressed poste-

rior putamen dopamine synthesis capacity on the three smartphone explanatory variables: (a) smartphone

usage, (b) speed, and (c) proportion of social touches via robust regression using the rlm function (MASS

package v7.3-51.4) in R.
Lasso regressions

While we found a relationship between dopamine synthesis capacity in the posterior putamen and the pro-

portion of touchscreen interactions on social apps, we were also curious whether such a relationship is spe-

cific to the posterior putamen and to social app use rather than other potentially explanatory variables. To

examine these questions, we extracted mean dopamine synthesis capacity from all voxels in five striatal

sub-regions, defined independently (via functional connectivity profiles: (Piray et al., 2017)): the anterior

(aPut) and posterior putamen (pPut), the medial (mCaud) and dorsal caudate nucleus (dCaud), and the

ventral striatum (vStr). We then fit lasso regressionmodels, for each of these regions, with the following pre-

dictors: total smartphone usage, proportion of social interactions, and interaction speed. We also included

the proportion of typing app interactions, participant age and gender. We fit lasso regression models in

MATLAB (MathWorks, Natick, USA) for parameter selection. Only those parameters which resulted in co-

efficients different from 0 based on 0.5 and 99.5 percentile range of the bootstrapped (1000) lasso coeffi-

cients were considered as meaningful contributors to the regression.

Permutation testing (via app label shuffling) revealed that the proportion of social taps significantly predicts

dopamine synthesis capacity in our model of the posterior putamen, but not in other regions (Figure S4).

Moreover, the only reliable predictor in the posterior putamen model was social taps, further demon-

strating the specificity of our results. Note that we also considered the possibility that gaming app use

was related to dopamine synthesis capacity, but variance was highly restricted (13 participants showed

no gaming at all). Nevertheless, and unsurprisingly given the limited variance, a parallel analysis incorpo-

rating gaming app use as a predictor in a lasso regression yielded no evidence of a relationship between

the proportion of gaming app interactions and dopamine synthesis capacity.
Frequency versus proportion of social app use

Our core analysis was focused on the proportion of smartphone interactions devoted to social apps – a var-

iable which wasmotivated by prior work relating the proportion of social app use to sensorimotor variability

(Balerna and Ghosh, 2018) and the implication of dopamine in sensorimotor variability (Costa, 2011; Galea

et al., 2013; Mikhael et al., 2021). We used proportion rather than the count of daily interactions using social

apps because a proportion measure provides complementary information to overall count of daily interac-

tions (which is also included in our multiple regression models). However, we also tested whether the count

of social app interactions was a better predictor than proportion. First, we tested whether each predictor,

on its own, relates to dopamine synthesis capacity in separate robust regression models. We found that the

proportion of social app interactions is reliably related to dopamine synthesis capacity (b= -1.2310-3 min-1,

t(20) = -3.7, p = 1.5310-3), but count is not (b = -2.4310-5 min-1, t(20) = -0.06, p = 0.95). To pit them directly

against each other, we fit a third robust regression model including regressors for speed along with both

proportion and count of social app interactions (excluding the overall count of daily interactions which is

highly correlated with the count of social app interactions). We found that dopamine synthesis capacity

related to speed (b = 8.1310-4 min-1, t(18) = 2.3, p = 2.8310-2) and proportion social app interactions

(b = -1.4310-3 min-1, t(18) = -4.9, p = 1.1310-4) but not count (b = -3.6310-4 min-1, t(18) = -1.1, p = 0.29).

Thus, in our data set, the proportion of social app usage covaries more reliably with dopamine synthesis

capacity.
8 iScience 24, 102497, May 21, 2021
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