61 research outputs found

    How does literacy affect speech processing? Not by enhancing cortical responses to speech, but by promoting connectivity of acoustic-phonetic and graphomotor cortices

    Get PDF
    Previous research suggests that literacy, specifically learning alphabetic letter-to-phoneme mappings, modifies online speech processing, and enhances brain responses, as indexed by the blood-oxygenation level dependent signal (BOLD), to speech in auditory areas associated with phonological processing (Dehaene et al., 2010). However, alphabets are not the only orthographic systems in use in the world, and hundreds of millions of individuals speak languages that are not written using alphabets. In order to make claims that literacy per se has broad and general consequences for brain responses to speech, one must seek confirmatory evidence from non-alphabetic literacy. To this end, we conducted a longitudinal fMRI study in India probing the effect of literacy in Devanagari, an abugida, on functional connectivity and cerebral responses to speech in 91 variously literate Hindi-speaking male and female human participants. Twenty-two completely illiterate participants underwent six months of reading and writing training. Devanagari literacy increases functional connectivity between acoustic-phonetic and graphomotor brain areas, but we find no evidence that literacy changes brain responses to speech, either in cross-sectional or longitudinal analyses. These findings shows that a dramatic reconfiguration of the neurofunctional substrates of online speech processing may not be a universal result of learning to read, and suggest that the influence of writing on speech processing should also be investigated

    Learning to read recycles visual cortical networks without destruction

    No full text
    Learning to read is associated with the appearance of an orthographically sensitive brain region known as the visual word form area. It has been claimed that development of this area proceeds by impinging upon territory otherwise available for the processing of culturally relevant stimuli such as faces and houses. In a large-scale functional magnetic resonance imaging study of a group of individuals of varying degrees of literacy (from completely illiterate to highly literate), we examined cortical responses to orthographic and nonorthographic visual stimuli. We found that literacy enhances responses to other visual input in early visual areas and enhances representational similarity between text and faces, without reducing the extent of response to nonorthographic input. Thus, acquisition of literacy in childhood recycles existing object representation mechanisms but without destructive competition

    A literacy-related color-specific deficit in rapid automatized naming: Evidence from neurotypical completely illiterate and literate adults

    Get PDF
    There is a robust positive relationship between reading skills and the time to name aloud an array of letters, digits, objects, or colors as quickly as possible. A convincing and complete explanation for the direction and locus of this association remains, however, elusive. In this study we investigated rapid automatized naming (RAN) of every-day objects and basic color patches in neurotypical illiterate and literate adults. Literacy acquisition and education enhanced RAN performance for both conceptual categories but this advantage was much larger for (abstract) colors than every-day objects. This result suggests that (i) literacy/education may be causal for serial rapid naming ability of non-alphanumeric items, (ii) differences in the lexical quality of conceptual representations can underlie the reading-related differential RAN performance

    Degradation levels of continuous speech affect neural speech tracking and alpha power differently

    Get PDF
    Making sense of a poor auditory signal can pose a challenge. Previous attempts to quantify speech intelligibility in neural terms have usually focused on one of two measures, namely low-frequency speech-brain synchronization or alpha power modulations. However, reports have been mixed concerning the modulation of these measures, an issue aggravated by the fact that they have normally been studied separately. We present two MEG studies analyzing both measures. In study 1, participants listened to unimodal auditory speech with three different levels of degradation (original, 7-channel and 3-channel vocoding). Intelligibility declined with declining clarity, but speech was still intelligible to some extent even for the lowest clarity level (3-channel vocoding). Low-frequency (1-7 Hz) speech tracking suggested a u-shaped relationship with strongest effects for the medium degraded speech (7-channel) in bilateral auditory and left frontal regions. To follow up on this finding, we implemented three additional vocoding levels (5-channel, 2-channel, 1-channel) in a second MEG study. Using this wider range of degradation, the speech-brain synchronization showed a similar pattern as in study 1 but further showed that when speech becomes unintelligible, synchronization declines again. The relationship differed for alpha power, which continued to decrease across vocoding levels reaching a floor effect for 5-channel vocoding. Predicting subjective intelligibility based on models either combining both measures or each measure alone, showed superiority of the combined model. Our findings underline that speech tracking and alpha power are modified differently by the degree of degradation of continuous speech but together contribute to the subjective speech understanding

    Does training with amplitude modulated tones affect tone-vocoded speech perception?

    Get PDF
    Temporal-envelope cues are essential for successful speech perception. We asked here whether training on stimuli containing temporal-envelope cues without speech content can improve the perception of spectrally-degraded (vocoded) speech in which the temporal-envelope (but not the temporal fine structure) is mainly preserved. Two groups of listeners were trained on different amplitude-modulation (AM) based tasks, either AM detection or AM-rate discrimination (21 blocks of 60 trials during two days, 1260 trials; frequency range: 4Hz, 8Hz, and 16Hz), while an additional control group did not undertake any training. Consonant identification in vocoded vowel-consonant-vowel stimuli was tested before and after training on the AM tasks (or at an equivalent time interval for the control group). Following training, only the trained groups showed a significant improvement in the perception of vocoded speech, but the improvement did not significantly differ from that observed for controls. Thus, we do not find convincing evidence that this amount of training with temporal-envelope cues without speech content provide significant benefit for vocoded speech intelligibility. Alternative training regimens using vocoded speech along the linguistic hierarchy should be explored

    Foreign Subtitles Help but Native-Language Subtitles Harm Foreign Speech Perception

    Get PDF
    Understanding foreign speech is difficult, in part because of unusual mappings between sounds and words. It is known that listeners in their native language can use lexical knowledge (about how words ought to sound) to learn how to interpret unusual speech-sounds. We therefore investigated whether subtitles, which provide lexical information, support perceptual learning about foreign speech. Dutch participants, unfamiliar with Scottish and Australian regional accents of English, watched Scottish or Australian English videos with Dutch, English or no subtitles, and then repeated audio fragments of both accents. Repetition of novel fragments was worse after Dutch-subtitle exposure but better after English-subtitle exposure. Native-language subtitles appear to create lexical interference, but foreign-language subtitles assist speech learning by indicating which words (and hence sounds) are being spoken

    Effect of Audiovisual Training on Monaural Spatial Hearing in Horizontal Plane

    Get PDF
    The article aims to test the hypothesis that audiovisual integration can improve spatial hearing in monaural conditions when interaural difference cues are not available. We trained one group of subjects with an audiovisual task, where a flash was presented in parallel with the sound and another group in an auditory task, where only sound from different spatial locations was presented. To check whether the observed audiovisual effect was similar to feedback, the third group was trained using the visual feedback paradigm. Training sessions were administered once per day, for 5 days. The performance level in each group was compared for auditory only stimulation on the first and the last day of practice. Improvement after audiovisual training was several times higher than after auditory practice. The group trained with visual feedback demonstrated a different effect of training with the improvement smaller than the group with audiovisual training. We conclude that cross-modal facilitation is highly important to improve spatial hearing in monaural conditions and may be applied to the rehabilitation of patients with unilateral deafness and after unilateral cochlear implantation

    Phonemes:Lexical access and beyond

    Get PDF
    • 

    corecore