190 research outputs found

    Phase structure and phase transitions in a three dimensional SU(2) superconductor

    Full text link
    We study the three dimensional SU(2)-symmetric noncompact CP1 model, with two charged matter fields coupled minimally to a noncompact Abelian gauge-field. The phase diagram and the nature of the phase transitions in this model have attracted much interest after it was proposed to describe an unusual continuous transition associated with deconfinement of spinons. Previously, it has been demonstrated for various two-component gauge theories that weakly first-order transitions may appear as continuous ones of a new universality class in simulations of relatively large, but finite systems. We have performed Monte-Carlo calculations on substantially larger systems sizes than those in previous works. We find that in some area of the phase diagram where at finite sizes one gets signatures consistent with a single first-order transition, in fact there is a sequence of two phase transitions with an O(3) paired phase sandwiched in between. We report (i) a new estimate for the location of a bicritical point and (ii) the first resolution of bimodal distributions in energy histograms at relatively low coupling strengths. We perform a flowgram analysis of the direct transition line with rescaling of the linear system size in order to obtain a data collapse. The data collapses up to coupling constants where we find bimodal distributions in energy histograms.Comment: 16 pages, 11 figures. Submitted to Physical Review

    Phase transitions in a three dimensional U(1)×U(1)U(1) \times U(1) lattice London superconductor

    Full text link
    We consider a three-dimensional lattice U(1)×U(1)U(1) \times U(1) superconductor in the London limit, with two individually conserved condensates. The problem, generically, has two types of intercomponent interactions of different characters. First, the condensates are interacting via a minimal coupling to the same fluctuating gauge field. A second type of coupling is the direct dissipationless drag represented by a local intercomponent current-current coupling term in the free energy functional. The interplay between these two types of interactions produces a number of physical effects not present in previously investigated U(1)×U(1)U(1)\times U(1) models with only one kind of intercomponent interaction. In this work, we present a study of the phase diagram of a U(1)×U(1)U(1) \times U(1) superconductor which includes both of these interactions. We study phase transitions and two types of competing paired phases which occur in this general model: (i) a metallic superfluid phase (where there is order only in the gauge invariant phase difference of the order parameters), (ii) a composite superconducting phase where there is order in the phase sum of the order parameters which has many properties of a single-component superconductor but with a doubled value of electric charge. We investigate the phase diagram with particular focus on what we call "preemptive phase transitions". These are phase transitions {\it unique to multicomponent condensates with competing topological objects}. A sudden proliferation of one kind of topological defects may come about due to a fluctuating background of topological defects in other sectors of the theory.Comment: 17 pages, 6 figures. Submitted to Physical Review

    Screening properties and phase transitions in unconventional plasmas for Ising-type quantum Hall states

    Full text link
    Utilizing large-scale Monte-Carlo simulations, we investigate an unconventional two-component classical plasma in two dimensions which controls the behavior of the norms and overlaps of the quantum-mechanical wavefunctions of Ising-type quantum Hall states. The plasma differs fundamentally from that which is associated with the two-dimensional XY model and Abelian fractional quantum Hall states. We find that this unconventional plasma undergoes a Berezinskii-Kosterlitz-Thouless phase transition from an insulator to a metal. The parameter values corresponding to Ising-type quantum Hall states lie on the metallic side of this transition. This result verifies the required properties of the unconventional plasma used to demonstrate that Ising-type quantum Hall states possess quasiparticles with non-Abelian braiding statistics.Comment: 16 pages, 14 figures. Submitted to Physical Review

    The phases of deuterium at extreme densities

    Full text link
    We consider deuterium compressed to higher than atomic, but lower than nuclear densities. At such densities deuterium is a superconducting quantum liquid. Generically, two superconducting phases compete, a "ferromagnetic" and a "nematic" one. We provide a power counting argument suggesting that the dominant interactions in the deuteron liquid are perturbative (but screened) Coulomb interactions. At very high densities the ground state is determined by very small nuclear interaction effects that probably favor the ferromagnetic phase. At lower densities the symmetry of the theory is effectively enhanced to SU(3), and the quantum liquid enters a novel phase, neither ferromagnetic nor nematic. Our results can serve as a starting point for investigations of the phase dynamics of deuteron liquids, as well as exploration of the stability and dynamics of the rich variety of topological objects that may occur in phases of the deuteron quantum liquid, which range from Alice strings to spin skyrmions to Z_2 vortices.Comment: 9 pages, 6 figures; v2: fixed typo

    A treatment evaluator tool to monitor the real-world effectiveness of inhaled aztreonam lysine in cystic fibrosis

    Get PDF
    Background: Studies are required that evaluate real-world outcomes of inhaled aztreonam lysine in patients with cystic fibrosis (CF). Methods: Our treatment-evaluator tool assessed the effectiveness of inhaled aztreonam in routine practice in 117 CF patients across four time periods (6–12 (P2) and 0–6 months (P1) pre-initiation, and 0–6 (T1) and 6–12 months (T2) post-initiation). Outcomes were: changes in %-predicted forced expiratory volume in 1 s (FEV1), body-mass index (BMI), hospitalisation days and intravenous antibiotic usage. Results: Median FEV1% predicted for each 6-month period was 38.9%, 34.6%, 37.1% and 36.5%; median change was − 2.0% between P2 and P1, increasing to + 0.6% (p < 0.001) between P1 and T1. Annualised hospital bed-days was reduced (p = 0.05) post-initiation, as was intravenous antibiotics days (p = 0.001). BMI increased over 6 months post-initiation (p ≤ 0.001). Conclusions: In patients with CF in routine practice, inhaled aztreonam lysine is associated with improved lung function and weight, and reduced hospitalisation and intravenous antibiotic use

    The health economic impact of disease management programs for COPD: A systematic literature review and meta-analysis

    Get PDF
    __Abstract__ Background: There is insufficient evidence of the cost-effectiveness of Chronic Obstructive Pulmonary Disease (COPD) Disease Management (COPD-DM) programs. The aim of this review is to evaluate the economic impact of COPD-DM programs and investigate the relation between the impact on healthcare costs and health outcomes. We also investigated the impact of patient-, intervention, and study-characteristics.Methods: We conducted a systematic literature review to identify cost-effectiveness studies of COPD-DM. Where feasible, results were pooled using random-effects meta-analysis and explorative subgroup analyses were performed.Results: Sixteen papers describing 11 studies were included (7 randomized control trials (RCT), 2 pre-post, 2 case-control). Meta-analysis showed that COPD-DM led to hospitalization savings of €1060 (95% CI: €2040 to €80) per patient per year and savings in total healthcare uti

    Control of Neural Stem Cell Survival by Electroactive Polymer Substrates

    Get PDF
    Stem cell function is regulated by intrinsic as well as microenvironmental factors, including chemical and mechanical signals. Conducting polymer-based cell culture substrates provide a powerful tool to control both chemical and physical stimuli sensed by stem cells. Here we show that polypyrrole (PPy), a commonly used conducting polymer, can be tailored to modulate survival and maintenance of rat fetal neural stem cells (NSCs). NSCs cultured on PPy substrates containing different counter ions, dodecylbenzenesulfonate (DBS), tosylate (TsO), perchlorate (ClO4) and chloride (Cl), showed a distinct correlation between PPy counter ion and cell viability. Specifically, NSC viability was high on PPy(DBS) but low on PPy containing TsO, ClO4 and Cl. On PPy(DBS), NSC proliferation and differentiation was comparable to standard NSC culture on tissue culture polystyrene. Electrical reduction of PPy(DBS) created a switch for neural stem cell viability, with widespread cell death upon polymer reduction. Coating the PPy(DBS) films with a gel layer composed of a basement membrane matrix efficiently prevented loss of cell viability upon polymer reduction. Here we have defined conditions for the biocompatibility of PPy substrates with NSC culture, critical for the development of devices based on conducting polymers interfacing with NSCs

    Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies

    Get PDF
    The high selectivity of the human blood-brain barrier (BBB) restricts delivery of many pharmaceuticals and therapeutic antibodies to the central nervous system. Here, we describe an in vitro microfluidic organ-on-a-chip BBB model lined by induced pluripotent stem cell-derived human brain microvascular endothelium interfaced with primary human brain astrocytes and pericytes that recapitulates the high level of barrier function of the in vivo human BBB for at least one week in culture. The endothelium expresses high levels of tight junction proteins and functional efflux pumps, and it displays selective transcytosis of peptides and antibodies previously observed in vivo. Increased barrier functionality was accomplished using a developmentally-inspired induction protocol that includes a period of differentiation under hypoxic conditions. This enhanced BBB Chip may therefore represent a new in vitro tool for development and validation of delivery systems that transport drugs and therapeutic antibodies across the human BBB
    corecore