9,726 research outputs found

    Efficient and accurate determination of lattice-vacancy diffusion coefficients via non equilibrium ab initio molecular dynamics

    Full text link
    We revisit the color-diffusion algorithm [P. C. Aeberhard et al., Phys. Rev. Lett. 108, 095901 (2012)] in nonequilibrium ab initio molecular dynamics (NE-AIMD), and propose a simple efficient approach for the estimation of monovacancy jump rates in crystalline solids at temperatures well below melting. Color-diffusion applied to monovacancy migration entails that one lattice atom (colored-atom) is accelerated toward the neighboring defect-site by an external constant force F. Considering bcc molybdenum between 1000 and 2800 K as a model system, NE-AIMD results show that the colored-atom jump rate k_{NE} increases exponentially with the force intensity F, up to F values far beyond the linear-fitting regime employed previously. Using a simple model, we derive an analytical expression which reproduces the observed k_{NE}(F) dependence on F. Equilibrium rates extrapolated by NE-AIMD results are in excellent agreement with those of unconstrained dynamics. The gain in computational efficiency achieved with our approach increases rapidly with decreasing temperatures, and reaches a factor of four orders of magnitude at the lowest temperature considered in the present study

    Temperature dependent effective potential method for accurate free energy calculations of solids

    Full text link
    We have developed a thorough and accurate method of determining anharmonic free energies, the temperature dependent effective potential technique (TDEP). It is based on \emph{ab initio} molecular dynamics followed by a mapping onto a model Hamiltonian that describes the lattice dynamics. The formalism and the numerical aspects of the technique are described in details. A number of practical examples are given, and results are presented, which confirm the usefulness of TDEP within \emph{ab initio} and classical molecular dynamics frameworks. In particular, we examine from first-principles the behavior of force constants upon the dynamical stabilization of body centered phase of Zr, and show that they become more localized. We also calculate phase diagram for 4^4He modeled with the Aziz \emph{et al.} potential and obtain results which are in favorable agreement both with respect to experiment and established techniques

    Ferromagnetic Film on a Superconducting Substrate

    Full text link
    We study the equilibrium domain structure and magnetic flux around a ferromagnetic (FM) film with perpendicular magnetization M_0 on a superconducting (SC) substrate. At 4{\pi}M_0<H_{c1} the SC is in the Meissner state and the equilibrium domain width in the film, l, scales as (l/4{\pi}{\lambda}_{L}) = (l_{N}/4{\pi}{\lambda}_{L})^{2/3} with the domain width on a normal (non-superconducting) substrate, l_{N}/4\pi\lambda_L >> 1. Here \lambda_L is the London penetration length. For 4{\pi}M_0 > H_{c1} and l_{N} in excess of about 35 {\lambda}_{L}, the domains are connected by SC vortices. We argue that pinning of vortices by magnetic domains in FM/SC multilayers can provide high critical currents.Comment: 4 pages, 2 figures, submitted to PR

    Dissociation of O2 at Al(111): The Role of Spin Selection Rules

    Full text link
    A most basic and puzzling enigma in surface science is the description of the dissociative adsorption of O2 at the (111) surface of Al. Already for the sticking curve alone, the disagreement between experiment and results of state-of-the-art first-principles calculations can hardly be more dramatic. In this paper we show that this is caused by hitherto unaccounted spin selection rules, which give rise to a highly non-adiabatic behavior in the O2/Al(111) interaction. We also discuss problems caused by the insufficient accuracy of present-day exchange-correlation functionals.Comment: 4 pages including 3 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Anharmonicity changes the solid solubility of an alloy at high temperatures

    Get PDF
    We have developed a method to accurately and efficiently determine the vibrational free energy as a function of temperature and volume for substitutional alloys from first principles. Taking Ti1x_{1-x}Alx_xN alloy as a model system, we calculate the isostructural phase diagram by finding the global minimum of the free energy, corresponding to the true equilibrium state of the system. We demonstrate that the anharmonic contribution and temperature dependence of the mixing enthalpy have a decisive impact on the calculated phase diagram of a Ti1x_{1-x}Alx_xN alloy, lowering the maximum temperature for the miscibility gap from 6560 K to 2860 K. Our local chemical composition measurements on thermally aged Ti0.5_{0.5}Al0.5_{0.5}N alloys agree with the calculated phase diagram.Comment: 4 pages, 5 figures, supplementary materia

    From electronic structure to catalytic activity: A single descriptor for adsorption and reactivity on transition-metal carbides

    Get PDF
    Adsorption and catalytic properties of the polar (111) surface of transition-metal carbides (TMC's) are investigated by density-functional theory. Atomic and molecular adsorption are rationalized with the concerted-coupling model, in which two types of TMC surface resonances (SR's) play key roles. The transition-metal derived SR is found to be a single measurable descriptor for the adsorption processes, implying that the Br{\o}nsted-Evans-Polanyi relation and scaling relations apply. This gives a picture with implications for ligand and vacancy effects and which has a potential for a broad screening procedure for heterogeneous catalysts.Comment: 5 pages, 3 figure

    Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO2_2

    Get PDF
    Although the rutile structure of TiO2_2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000\,K. Inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO2_2 from 300 to 1373\,K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic to quartic, stabilizing the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3d3d electrons of Ti and 2p2p electrons of O atoms. With thermal expansion, the energy variation in this "phonon-tracked hybridization" flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.Comment: 7 pages, 6 figures, supplemental material (3 figures

    Itinerant ferromagnetism and intrinsic anomalous Hall effect in amorphous iron-germanium

    Get PDF
    The amorphous iron-germanium system (a-FexGe1-x) lacks long-range structural order and hence lacks a meaningful Brillouin zone. The magnetization of a-FexGe1-x is well explained by the Stoner model for Fe concentrations x above the onset of magnetic order around x=0.4, indicating that the local order of the amorphous structure preserves the spin-split density of states of the Fe-3d states sufficiently to polarize the electronic structure despite k being a bad quantum number. Measurements reveal an enhanced anomalous Hall resistivity ρxyAH relative to crystalline FeGe; this ρxyAH is compared to density-functional theory calculations of the anomalous Hall conductivity to resolve its underlying mechanisms. The intrinsic mechanism, typically understood as the Berry curvature integrated over occupied k states but shown here to be equivalent to the density of curvature integrated over occupied energies in aperiodic materials, dominates the anomalous Hall conductivity of a-FexGe1-x (0.38≤x≤0.61). The density of curvature is the sum of spin-orbit correlations of local orbital states and can hence be calculated with no reference to k space. This result and the accompanying Stoner-like model for the intrinsic anomalous Hall conductivity establish a unified understanding of the underlying physics of the anomalous Hall effect in both crystalline and disordered systems
    corecore