165 research outputs found

    Glioblastoma treated with magnetic resonance imaging-guided laser interstitial thermal therapy: Safety, efficacy, and outcomes

    Get PDF
    BACKGROUND: Despite the multitude of available treatments, glioblastoma (GBM) remains an aggressive and uniformly fatal tumor. Laser interstitial thermal therapy (LITT) is a novel, minimally invasive treatment that holds promise for treating patients with GBM who are not candidates for traditional open craniotomy. However, due to the recent introduction of LITT into clinical practice, large series that evaluate safety and long-term outcomes after LITT are lacking. OBJECTIVE: To present our institution\u27s series of over 50 GBM patients treated with LITT, with regard to safety, efficacy, and outcomes. METHODS: We performed a retrospective descriptive study of patients with histologically proven GBM who underwent LITT. Data collected included demographics, tumor location and volume, tumor genetic markers, treatment volume, perioperative complications, and long-term follow-up data. RESULTS: We performed 58 LITT treatments for GBM in 54 patients over 5.5 yr. Forty-one were recurrent tumors while 17 were frontline treatments. Forty GBMs were lobar in location, while 18 were in deep structures (thalamus, insula, corpus callosum). Average tumor volume was 12.5 ± 13.4 cm3. Average percentage of tumor treated with the yellow thermal damage threshold (TDT) line (dose equivalent of 43°C for 2 min) was 93.3% ± 10.6%, and with the blue TDT line (dose equivalent of 43°C for 10 min) was 88.0% ± 14.2%. There were 7 perioperative complications (12%) and 2 mortalities (3.4%). Median overall survival after LITT for the total cohort was 11.5 mo, and median progression-free survival 6.6 mo. CONCLUSION: LITT appears to be a safe and effective treatment for GBM in properly selected patients

    Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway

    Get PDF
    Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation.Norman B. Leventhal FellowshipUnited States. National Institutes of Health (NIH T32 MH074249)United States. National Institutes of Health (NIH RO1 NS051874

    A hippocampal Cdk5 pathway regulates extinction of contextual fear

    Get PDF
    Treatment of emotional disorders involves the promotion of extinction processes, which are defined as the learned reduction of fear. The molecular mechanisms underlying extinction have only begun to be elucidated. By employing genetic and pharmacological approaches in mice, we show here that extinction requires downregulation of Rac-1 and cyclin-dependent kinase 5 (Cdk5), and upregulation of p21 activated kinase-1 (PAK-1) activity. This is physiologically achieved by a Rac-1–dependent relocation of the Cdk5 activator p35 from the membrane to the cytosol and dissociation of p35 from PAK-1. Moreover, our data suggest that Cdk5/p35 activity prevents extinction in part by inhibition of PAK-1 activity in a Rac-1–dependent manner. We propose that extinction of contextual fear is regulated by counteracting components of a molecular pathway involving Rac-1, Cdk5 and PAK-1. Our data suggest that this pathway could provide a suitable target for therapeutic treatment of emotional disorders.National Institutes of Health (U.S.) (Grant NS051874)Alexander von Humboldt-Stiftung (German Research Foundation Fellowship)European Neuroscience Institute Goettinge

    SLO-2 Is Cytoprotective and Contributes to Mitochondrial Potassium Transport

    Get PDF
    Mitochondrial potassium channels are important mediators of cell protection against stress. The mitochondrial large-conductance “big” K+ channel (mBK) mediates the evolutionarily-conserved process of anesthetic preconditioning (APC), wherein exposure to volatile anesthetics initiates protection against ischemic injury. Despite the role of the mBK in cardioprotection, the molecular identity of the channel remains unknown. We investigated the attributes of the mBK using C. elegans and mouse genetic models coupled with measurements of mitochondrial K+ transport and APC. The canonical Ca2+-activated BK (or “maxi-K”) channel SLO1 was dispensable for both mitochondrial K+ transport and APC in both organisms. Instead, we found that the related but physiologically-distinct K+ channel SLO2 was required, and that SLO2-dependent mitochondrial K+ transport was triggered directly by volatile anesthetics. In addition, a SLO2 channel activator mimicked the protective effects of volatile anesthetics. These findings suggest that SLO2 contributes to protection from hypoxic injury by increasing the permeability of the mitochondrial inner membrane to K+

    Cyclin-dependent kinase 5 mediates pleiotrophin-induced endothelial cell migration

    Get PDF
    Pleiotrophin (PTN) stimulates endothelial cell migration through binding to receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and ανβ3 integrin. Screening for proteins that interact with RPTPβ/ζ and potentially regulate PTN signaling, through mass spectrometry analysis, identified cyclin-dependent kinase 5 (CDK5) activator p35 among the proteins displaying high sequence coverage. Interaction of p35 with the serine/threonine kinase CDK5 leads to CDK5 activation, known to be implicated in cell migration. Protein immunoprecipitation and proximity ligation assays verified p35-RPTPβ/ζ interaction and revealed the molecular association of CDK5 and RPTPβ/ζ. In endothelial cells, PTN activates CDK5 in an RPTPβ/ζ- and phosphoinositide 3-kinase (PI3K)-dependent manner. On the other hand, c-Src, ανβ3 and ERK1/2 do not mediate the PTN-induced CDK5 activation. Pharmacological and genetic inhibition of CDK5 abolished PTN-induced endothelial cell migration, suggesting that CDK5 mediates PTN stimulatory effect. A new pyrrolo[2,3-α]carbazole derivative previously identified as a CDK1 inhibitor, was found to suppress CDK5 activity and eliminate PTN stimulatory effect on cell migration, warranting its further evaluation as a new CDK5 inhibitor. Collectively, our data reveal that CDK5 is activated by PTN, in an RPTPβ/ζ-dependent manner, regulates PTN-induced cell migration and is an attractive target for the inhibition of PTN pro-angiogenic properties

    Behavioral and Immune Responses to Infection Require Gαq- RhoA Signaling in C. elegans

    Get PDF
    Following pathogen infection the hosts' nervous and immune systems react with coordinated responses to the danger. A key question is how the neuronal and immune responses to pathogens are coordinated, are there common signaling pathways used by both responses? Using C. elegans we show that infection by pathogenic strains of M. nematophilum, but not exposure to avirulent strains, triggers behavioral and immune responses both of which require a conserved Gαq-RhoGEF Trio-Rho signaling pathway. Upon infection signaling by the Gαq pathway within cholinergic motorneurons is necessary and sufficient to increase release of the neurotransmitter acetylcholine and increase locomotion rates and these behavioral changes result in C. elegans leaving lawns of M. nematophilum. In the immune response to infection signaling by the Gαq pathway within rectal epithelial cells is necessary and sufficient to cause changes in cell morphology resulting in tail swelling that limits the infection. These Gαq mediated behavioral and immune responses to infection are separate, act in a cell autonomous fashion and activation of this pathway in the appropriate cells can trigger these responses in the absence of infection. Within the rectal epithelium the Gαq signaling pathway cooperates with a Ras signaling pathway to activate a Raf-ERK-MAPK pathway to trigger the cell morphology changes, whereas in motorneurons Gαq signaling triggers behavioral responses independent of Ras signaling. Thus, a conserved Gαq pathway cooperates with cell specific factors in the nervous and immune systems to produce appropriate responses to pathogen. Thus, our data suggests that ligands for Gq coupled receptors are likely to be part of the signals generated in response to M. nematophilum infection

    Scholarly publishing depends on peer reviewers

    Get PDF
    The peer-review crisis is posing a risk to the scholarly peer-reviewed journal system. Journals have to ask many potential peer reviewers to obtain a minimum acceptable number of peers accepting reviewing a manuscript. Several solutions have been suggested to overcome this shortage. From reimbursing for the job, to eliminating pre- publication reviews, one cannot predict which is more dangerous for the future of scholarly publishing. And, why not acknowledging their contribution to the final version of the article published? PubMed created two categories of contributors: authors [AU] and collaborators [IR]. Why not a third category for the peer-reviewer
    corecore