25 research outputs found

    A microfluidic platform integrating functional vascularized organoids-on-chip

    Get PDF
    The development of vascular networks in microfluidic chips is crucial for the long-term culture of three-dimensional cell aggregates such as spheroids, organoids, tumoroids, or tissue explants. Despite rapid advancement in microvascular network systems and organoid technologies, vascularizing organoids-on-chips remains a challenge in tissue engineering. Most existing microfluidic devices poorly reflect the complexity of in vivo flows and require complex technical set-ups. Considering these constraints, we develop a platform to establish and monitor the formation of endothelial networks around mesenchymal and pancreatic islet spheroids, as well as blood vessel organoids generated from pluripotent stem cells, cultured for up to 30 days on-chip. We show that these networks establish functional connections with the endothelium-rich spheroids and vascular organoids, as they successfully provide intravascular perfusion to these structures. We find that organoid growth, maturation, and function are enhanced when cultured on-chip using our vascularization method. This microphysiological system represents a viable organ-on-chip model to vascularize diverse biological 3D tissues and sets the stage to establish organoid perfusions using advanced microfluidics

    The histone demethylase LSD1 regulates inner ear progenitor differentiation through interactions with Pax2 and the NuRD repressor complex

    Get PDF
    The histone demethylase LSD1 plays a pivotal role in cellular differentiation, particularly in silencing lineage-specific genes. However, little is known about how LSD1 regulates neurosensory differentiation in the inner ear. Here we show that LSD1 interacts directly with the transcription factor Pax2 to form the NuRD co-repressor complex at the Pax2 target gene loci in a mouse otic neuronal progenitor cell line (VOT-N33). VOT-N33 cells expressing a Pax2-response element reporter were GFP-negative when untreated, but became GFP positive after forced differentiation or treatment with a potent LSD inhibitor. Pharmacological inhibition of LSD1 activity resulted in the enrichment of mono- and di-methylation of H3K4, upregulation of sensory neuronal genes and an increase in the number of sensory neurons in mouse inner ear organoids. Together, these results identify the LSD1/NuRD complex as a previously unrecognized modulator for Pax2-mediated neuronal differentiation in the inner ear

    Epigenetic Regulation of a Murine Retrotransposon by a Dual Histone Modification Mark

    Get PDF
    Large fractions of eukaryotic genomes contain repetitive sequences of which the vast majority is derived from transposable elements (TEs). In order to inactivate those potentially harmful elements, host organisms silence TEs via methylation of transposon DNA and packaging into chromatin associated with repressive histone marks. The contribution of individual histone modifications in this process is not completely resolved. Therefore, we aimed to define the role of reversible histone acetylation, a modification commonly associated with transcriptional activity, in transcriptional regulation of murine TEs. We surveyed histone acetylation patterns and expression levels of ten different murine TEs in mouse fibroblasts with altered histone acetylation levels, which was achieved via chemical HDAC inhibition with trichostatin A (TSA), or genetic inactivation of the major deacetylase HDAC1. We found that one LTR retrotransposon family encompassing virus-like 30S elements (VL30) showed significant histone H3 hyperacetylation and strong transcriptional activation in response to TSA treatment. Analysis of VL30 transcripts revealed that increased VL30 transcription is due to enhanced expression of a limited number of genomic elements, with one locus being particularly responsive to HDAC inhibition. Importantly, transcriptional induction of VL30 was entirely dependent on the activation of MAP kinase pathways, resulting in serine 10 phosphorylation at histone H3. Stimulation of MAP kinase cascades together with HDAC inhibition led to simultaneous phosphorylation and acetylation (phosphoacetylation) of histone H3 at the VL30 regulatory region. The presence of the phosphoacetylation mark at VL30 LTRs was linked with full transcriptional activation of the mobile element. Our data indicate that the activity of different TEs is controlled by distinct chromatin modifications. We show that activation of a specific mobile element is linked to a dual epigenetic mark and propose a model whereby phosphoacetylation of histone H3 is crucial for full transcriptional activation of VL30 elements

    Pseudorabies virus hijacks DDX3X, initiating an addictive 'mad itch' and immune suppression, to facilitate viral spread

    No full text
    Infections with defined Herpesviruses, such as Pseudorabies virus (PRV) and Varicella zoster virus (VZV) can cause neuropathic itch, referred to as “mad itch” in multiple species. The underlying mechanisms involved in neuropathic “mad itch” are poorly understood. Here, we show that PRV infections hijack the RNA helicase DDX3X in sensory neurons to facilitate anterograde transport of the virus along axons. PRV induces re-localization of DDX3X from the cell body to the axons which ultimately leads to death of the infected sensory neurons. Inducible genetic ablation of Ddx3x in sensory neurons results in neuronal death and “mad itch” in mice. This neuropathic “mad itch” is propagated through activation of the opioid system making the animals “addicted to itch”. Moreover, we show that PRV co-opts and diverts T cell development in the thymus via a sensory neuron-IL-6-hypothalamus-corticosterone stress pathway. Our data reveal how PRV, through regulation of DDX3X in sensory neurons, travels along axons and triggers neuropathic itch and immune deviations to initiate pathophysiological programs which facilitate its spread to enhance infectivity

    The HUSH complex controls brain architecture and protocadherin fidelity

    No full text
    The HUSH (human silencing hub) complex contains the H3K9me3 binding protein M-phase phosphoprotein 8 (MPP8) and recruits the histone methyltransferase SETDB1 as well as Microrchidia CW-type zinc finger protein 2 (MORC2). Functional and mechanistic studies of the HUSH complex have hitherto been centered around SETDB1 while the in vivo functions of MPP8 and MORC2 remain elusive. Here, we show that genetic inactivation of Mphosph8 or Morc2a in the nervous system of mice leads to increased brain size, altered brain architecture, and behavioral changes. Mechanistically, in both mouse brains and human cerebral organoids, MPP8 and MORC2 suppress the repetitive-like protocadherin gene cluster in an H3K9me3-dependent manner. Our data identify MPP8 and MORC2, previously linked to silencing of repetitive elements via the HUSH complex, as key epigenetic regulators of protocadherin expression in the nervous system and thereby brain development and neuronal individuality in mice and humans.ISSN:2375-254

    A whole‐genome scan for Artemisinin cytotoxicity reveals a novel therapy for human brain tumors

    No full text
    Abstract The natural compound Artemisinin is the most widely used antimalarial drug worldwide. Based on its cytotoxicity, it is also used for anticancer therapy. Artemisinin and its derivates are endoperoxides that damage proteins in eukaryotic cells; their definite mechanism of action and host cell targets, however, have remained largely elusive. Using yeast and haploid stem cell screening, we demonstrate that a single cellular pathway, namely porphyrin (heme) biosynthesis, is required for the cytotoxicity of Artemisinins. Genetic or pharmacological modulation of porphyrin production is sufficient to alter its cytotoxicity in eukaryotic cells. Using multiple model systems of human brain tumor development, such as cerebral glioblastoma organoids, and patient‐derived tumor spheroids, we sensitize cancer cells to dihydroartemisinin using the clinically approved porphyrin enhancer and surgical fluorescence marker 5‐aminolevulinic acid, 5‐ALA. A combination treatment of Artemisinins and 5‐ALA markedly and specifically killed brain tumor cells in all model systems tested, including orthotopic patient‐derived xenografts in vivo. These data uncover the critical molecular pathway for Artemisinin cytotoxicity and a sensitization strategy to treat different brain tumors, including drug‐resistant human glioblastomas

    FIBCD1 is an endocytic GAG receptor associated with a novel neurodevelopmental disorder

    No full text
    Abstract Whole‐exome sequencing of two patients with idiopathic complex neurodevelopmental disorder (NDD) identified biallelic variants of unknown significance within FIBCD1, encoding an endocytic acetyl group‐binding transmembrane receptor with no known function in the central nervous system. We found that FIBCD1 preferentially binds and endocytoses glycosaminoglycan (GAG) chondroitin sulphate‐4S (CS‐4S) and regulates GAG content of the brain extracellular matrix (ECM). In silico molecular simulation studies and GAG binding analyses of patient variants determined that such variants are loss‐of‐function by disrupting FIBCD1‐CS‐4S association. Gene knockdown in flies resulted in morphological disruption of the neuromuscular junction and motor‐related behavioural deficits. In humans and mice, FIBCD1 is expressed in discrete brain regions, including the hippocampus. Fibcd1 KO mice exhibited normal hippocampal neuronal morphology but impaired hippocampal‐dependent learning. Further, hippocampal synaptic remodelling in acute slices from Fibcd1 KO mice was deficient but restored upon enzymatically modulating the ECM. Together, we identified FIBCD1 as an endocytic receptor for GAGs in the brain ECM and a novel gene associated with an NDD, revealing a critical role in nervous system structure, function and plasticity
    corecore