15,083 research outputs found

    INPOP new release: INPOP13b

    Full text link
    Based on the use of MESSENGER radiotracking data in the construction of new Mercury ephemerides (Verma et al. 2014) a new planetary ephemerides INPOP13b was built including Mercury improvements but also improvements on the Mars orbit and on the tie of INPOP planetary ephemerides to ICRF in general.Comment: INPOP sources available http://www.imcce.fr/inpo

    Electron density distribution and solar plasma correction of radio signals using MGS, MEX and VEX spacecraft navigation data and its application to planetary ephemerides

    Full text link
    The Mars Global Surveyor (MGS), Mars Express (MEX), and Venus Express (VEX) experienced several superior solar conjunctions. These conjunctions cause severe degradations of radio signals when the line of sight between the Earth and the spacecraft passes near to the solar corona region. The primary objective of this work is to deduce a solar corona model from the spacecraft navigation data acquired at the time of solar conjunctions and to estimate its average electron density. The corrected or improved data are then used to fit the dynamical modeling of the planet motions, called planetary ephemerides. We analyzed the radio science raw data of the MGS spacecraft using the orbit determination software GINS. The range bias, obtained from GINS and provided by ESA for MEX and VEX, are then used to derive the electron density profile. These profiles are obtained for different intervals of solar distances: from 12Rs to 215Rs for MGS, 6Rs to 152Rs for MEX, and form 12Rs to 154Rs for VEX. They are acquired for each spacecraft individually, for ingress and egress phases separately and both phases together, for different types of solar winds (fast, slow), and for solar activity phases (minimum, maximum). We compared our results with the previous estimations that were based on in situ measurements, and on solar type III radio and radio science studies made at different phases of solar activity and at different solar wind states. Our results are consistent with estimations obtained by these different methods. Moreover, fitting the planetary ephemerides including complementary data that were corrected for the solar corona perturbations, noticeably improves the extrapolation capability of the planetary ephemerides and the estimation of the asteroids masses.Comment: Accepted for publication in A&

    Energy fluxes in helical magnetohydrodynamics and dynamo action

    Full text link
    Renormalized viscosity, renormalized resistivity, and various energy fluxes are calculated for helical magnetohydrodynamics using perturbative field theory. The calculation is to first-order in perturbation. Kinetic and magnetic helicities do not affect the renormalized parameters, but they induce an inverse cascade of magnetic energy. The sources for the the large-scale magnetic field have been shown to be (1) energy flux from large-scale velocity field to large-scale magnetic field arising due to nonhelical interactions, and (2) inverse energy flux of magnetic energy caused by helical interactions. Based on our flux results, a premitive model for galactic dynamo has been constructed. Our calculations yields dynamo time-scale for a typical galaxy to be of the order of 10810^8 years. Our field-theoretic calculations also reveal that the flux of magnetic helicity is backward, consistent with the earlier observations based on absolute equilibrium theory.Comment: REVTEX4; A factor of 2 corrected in helicit

    Incompressible Turbulence as Nonlocal Field Theory

    Full text link
    It is well known that incompressible turbulence is nonlocal in real space because sound speed is infinite in incompressible fluids. The equation in Fourier space indicates that it is nonlocal in Fourier space as well. Contrast this with Burgers equation which is local in real space. Note that the sound speed in Burgers equation is zero. In our presentation we will contrast these two equations using nonlocal field theory. Energy spectrum and renormalized parameters will be discussed.Comment: 7 pages; Talk presented in Conference on "Perspectives in Nonlinear Dynamics (PNLD 2004)" held in Chennai, 200

    Computation of Kolmogorov's Constant in Magnetohydrodynamic Turbulence

    Get PDF
    In this paper we calculate Kolmogorov's constant for magnetohydrodynamic turbulence to one loop order in perturbation theory using the direct interaction approximation technique of Kraichnan. We have computed the constants for various Eu(k)/Eb(k)E^u(k)/E^b(k), i.e., fluid to magnetic energy ratios when the normalized cross helicity is zero. We find that KK increases from 1.47 to 4.12 as we go from fully fluid case (Eb=0)(E^b=0) to a situation when Eu/Eb=0.5% E^u/E^b=0.5, then it decreases to 3.55 in a fully magnetic limit (Eu=0)(E^u=0). When Eu/Eb=1E^u/E^b=1, we find that K=3.43K=3.43.Comment: Latex, 10 pages, no figures, To appear in Euro. Phys. Lett., 199

    Critical Cooperation Range to Improve Spatial Network Robustness

    Full text link
    A robust worldwide air-transportation network (WAN) is one that minimizes the number of stranded passengers under a sequence of airport closures. Building on top of this realistic example, here we address how spatial network robustness can profit from cooperation between local actors. We swap a series of links within a certain distance, a cooperation range, while following typical constraints of spatially embedded networks. We find that the network robustness is only improved above a critical cooperation range. Such improvement can be described in the framework of a continuum transition, where the critical exponents depend on the spatial correlation of connected nodes. For the WAN we show that, except for Australia, all continental networks fall into the same universality class. Practical implications of this result are also discussed

    Mid-Infrared line diagnostics of Active Galaxies -- A spectroscopic AGN survey with ISO-SWS

    Get PDF
    We present medium resolution (R approx. 1500) ISO-SWS 2.4--45 micron spectra of a sample of 29 galaxies with active nuclei. This data set is rich in fine structure emission lines tracing the narrow line regions and (circum-)nuclear star formation regions, and it provides a coherent spectroscopic reference for future extragalactic studies in the mid-infrared. We use the data set to briefly discuss the physical conditions in the narrow line regions (density, temperature, excitation, line profiles) and to test for possible differences between AGN sub-types. Our main focus is on new tools for determining the propertibes of dusty galaxies and on the AGN-starburst connection. We present mid-IR line ratio diagrams which can be used to identify composite (starburst + AGN) sources and to distinguish between emission excited by active nuclei and emission from (circum-nuclear) star forming regions. For instance, line ratios of high to low excitation lines like [O IV]25.9um/[Ne II]12.8um, that have been used to probe for AGNs in dusty objects, can be examined in more detail and with better statistics now. In addition, we present two-dimensional diagnostic diagrams that are fully analogous to classical optical diagnostic diagrams, but better suited for objects with high extinction. Finally, we discuss correlations of mid-infrared line fluxes to the mid- and far-infrared continuum. We compare these relations to similar relations in starburst galaxies in order to examine the contribution of AGNs to the bolometric luminosities of their host galaxies. The spectra are available in electronic form from the authors.Comment: 24 pages, 23 figures, 5 tables. Accepted for A&

    Phase-field simulations of viscous fingering in shear-thinning fluids

    Full text link
    A phase-field model for the Hele-Shaw flow of non-Newtonian fluids is developed. It extends a previous model for Newtonian fluids to a wide range of shear-dependent fluids. The model is applied to perform simulations of viscous fingering in shear- thinning fluids, and it is found to be capable of describing the complete crossover from the Newtonian regime at low shear rate to the strongly shear-thinning regime at high shear rate. The width selection of a single steady-state finger is studied in detail for a 2-plateaux shear-thinning law (Carreau law) in both its weakly and strongly shear-thinning limits, and the results are related to previous analyses. In the strongly shear-thinning regime a rescaling is found for power-law (Ostwald-de-Waehle) fluids that allows for a direct comparison between simulations and experiments without any adjustable parameters, and good agreement is obtained
    corecore