2,404 research outputs found

    The role of tidal interactions in driving galaxy evolution

    Full text link
    We carry out a statistical analysis of galaxy pairs selected from chemical hydrodynamical simulations with the aim at assessing the capability of hierarchical scenarios to reproduce recent observational results for galaxies in pairs. Particularly, we analyse the effects of mergers and interactions on the star formation (SF) activity, the global mean chemical properties and the colour distribution of interacting galaxies. We also assess the effects of spurious pairs.Comment: to appear in "Groups of galaxies in the nearby Universe" ESO Workshop, (Dec 2005) Santiago, Chil

    Methylation landscape in the genome of higher plants of agronomical interest

    Full text link
    In eukaryotic cells the methylation of cytosines in DNA is an essential mechanism which is implied in the dynamic organization of the genome structure, in relation to genes expression. Plant genomes contain a significant proportion and variable according to the species, of sequences which are likely to be methylated during the life of the plant. It is known that the establishment and the maintenance of methylation profiles in both genomic areas and specific sequences constitute a crucial mediator in the modulation of genes expression during development. Recent studies have evidenced the implication of epimutations in the adaptation of plants to their environment particularly in response to biotic and abiotic stresses. Recently, the complete mapping of methylation in the genomes of Arabidopsis thaliana and rice provided invaluable information on the distribution of methylation within genes in relation to their expression. The impact of changes in the methylation profiles on the characters of agronomic importance has not been intensively studied yet, whereas this question takes a considerable importance in the context of an increasing food demand and foreseen global climate changes. The METHYLANDSCAPE project proposes to isolate genomic DNA sequences on the basis of their degree of methylation and to connect the variation of their methylation profiles with, on the one hand, the expression of the corresponding genes and, on the other hand, with environmental or developmental processes. Thus, it should be possible to identify genes which expression is differentially controlled by methylation during development and/or in situation of stress, and likely to have an influence on the agronomic value of the plant. The METHYLANDSCAPE partners thus propose to bring signification advances in plant genomics on four original species, by integrating DNA methylation mapping and the relationship between epigenome and transcriptome, up to the generation of methylation-sensitive markers linked with characters of agronomic importance. (Texte intégral

    Multi-scale magnetic field intermittence in the plasma sheet

    Get PDF
    This paper demonstrates that intermittent magnetic field fluctuations in the plasma sheet exhibit transitory, localized, and multi-scale features. We propose a multifractal based algorithm, which quantifies intermittence on the basis of the statistical distribution of the 'strength of burstiness', estimated within a sliding window. Interesting multi-scale phenomena observed by the Cluster spacecraft include large scale motion of the current sheet and bursty bulk flow associated turbulence, interpreted as a cross-scale coupling (CSC) process.Comment: 18 pages, 7 figure

    Bounding sup-norms of cusp forms of large level

    Full text link
    Let f be an L2L^2-normalized weight zero Hecke-Maass cusp form of square-free level N, character χ\chi and Laplacian eigenvalue λ1/4\lambda\geq 1/4. It is shown that fλN1/37\| f \|_{\infty} \ll_{\lambda} N^{-1/37}, from which the hybrid bound fλ1/4(Nλ)δ\|f \|_{\infty} \ll \lambda^{1/4} (N\lambda)^{-\delta} (for some δ>0\delta > 0) is derived. The first bound holds also for f=yk/2Ff = y^{k/2}F where F is a holomorphic cusp form of weight k with the implied constant now depending on k.Comment: version 3: substantially revised versio

    First simultaneous observations of flux transfer events at the high-latitude magnetopause by the cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars

    Get PDF
    Cluster magnetic field data are studied during an outbound pass through the post-noon high-latitude magnetopause region on 14 February 2001. The onset of several minute perturbations in the magnetospheric field was observed in conjunction with a southward turn of the interplanetary magnetic field observed upstream by the ACE spacecraft and lagged to the subsolar magnetopause. These perturbations culminated in the observation of four clear magnetospheric flux transfer events (FTEs) adjacent to the magnetopause, together with a highly-structured magnetopause boundary layer containing related field features. Furthermore, clear FTEs were observed later in the magnetosheath. The magnetospheric FTEs were of essentially the same form as the original “flux erosion events” observed in HEOS-2 data at a similar location and under similar interplanetary conditions by Haerendel et al. (1978). We show that the nature of the magnetic perturbations in these events is consistent with the formation of open flux tubes connected to the northern polar ionosphere via pulsed reconnection in the dusk sector magnetopause. The magnetic footprint of the Cluster spacecraft during the boundary passage is shown to map centrally within the fields-of-view of the CUTLASS SuperDARN radars, and to pass across the field-aligned beam of the EISCAT Svalbard radar (ESR) system. It is shown that both the ionospheric flow and the backscatter power in the CUTLASS data pulse are in synchrony with the magnetospheric FTEs and boundary layer structures at the latitude of the Cluster footprint. These flow and power features are subsequently found to propagate poleward, forming classic “pulsed ionospheric flow” and “poleward-moving radar auroral form” structures at higher latitudes. The combined Cluster-CUTLASS observations thus represent a direct demonstration of the coupling of momentum and energy into the magnetosphere-ionosphere system via pulsed magnetopause reconnection. The ESR observations also reveal the nature of the structured and variable polar ionosphere produced by the structured and time-varying precipitation and flow

    Cluster observations of structures at quasi-parallel bow shocks

    Get PDF
    International audienceCollisionless quasi-parallel shocks are thought to be composed of a patchwork of short, large-amplitude magnetic structures (SLAMS) which act to thermalise the plasma, giving rise to a spatially extended and time varying shock transition. With the launch of Cluster, new observations of the three-dimensional shape and size of shock structures are available. In this paper we present SLAMS observations made when the Cluster tetrahedron scale size was ~100km. The SLAMS magnetic field enhancement is typically well correlated between spacecraft on this scale, although small differences are observed. The statistical characteristics of these differences contain information on the typical gradients of magnetic field changes within the SLAM structure which, in the case studied here, occur on scales of 100-150km, comparable with the upstream ion inertial length

    On the location of dayside magnetic reconnection during an interval of duskward oriented IMF

    Get PDF
    We present space- and ground-based observations of the signatures of magnetic reconnection during an interval of duskward-oriented interplanetary magnetic field on 25 March 2004. In situ field and plasma measurements are drawn from the Double Star and Cluster satellites during traversals of the pre-noon sector dayside magnetopause at low and high latitudes, respectively. These reveal the typical signatures of flux transfer events (FTEs), namely bipolar perturbations in the magnetic field component normal to the local magnetopause, enhancements in the local magnetic field strength and mixing of magnetospheric and magnetosheath plasmas. Further evidence of magnetic reconnection is inferred from the ground-based signatures of pulsed ionospheric flow observed over an extended interval. In order to ascertain the location of the reconnection site responsible for the FTEs, a simple model of open flux tube motion over the surface of the magnetopause is employed. A comparison of the modelled and observed motion of open flux tubes (i.e. FTEs) and plasma flow in the magnetopause boundary layer indicates that the FTEs observed at both low and high latitudes were consistence with the existence of a tilted X-line passing through the sub-solar region, as suggested by the component reconnection paradigm. While a high latitude X-line (as predicted by the anti-parallel description of reconnection) may have been present, we find it unlikely that it could have been responsible for the FTEs observed in the pre-noon sector under the observed IMF conditions. Finally, we note that throughout the interval, the magnetosphere was bathed in ULF oscillations within the solar wind electric field. While no one-to-one correspondence with the pulsed reconnection rate suggested by the ground-based observation of pulsed ionospheric flow has been demonstrated, we note that similar periodicity oscillations were observed throughout the solar wind-magnetosphere-ionosphere system. These findings are consistent with previously proposed mechanisms of solar wind modulation of the dayside reconnection rate

    Relating near-Earth observations of an interplanetary coronal mass ejection to the conditions at its site of origin in the solar corona

    Get PDF
    A halo coronal mass ejection (CME) was detected on January 20, 2004. We use solar remote sensing data (SOHO, Culgoora) and near-Earth in situ data (Cluster) to identify the CME source event and show that it was a long duration flare in which a magnetic flux rope was ejected, carrying overlying coronal arcade material along with it. We demonstrate that signatures of both the arcade material and the flux rope material are clearly identifiable in the Cluster and ACE data, indicating that the magnetic field orientations changed little as the material traveled to the Earth, and that the methods we used to infer coronal magnetic field configurations are effective

    Lower bounds for several online variants of bin packing

    Full text link
    We consider several previously studied online variants of bin packing and prove new and improved lower bounds on the asymptotic competitive ratios for them. For that, we use a method of fully adaptive constructions. In particular, we improve the lower bound for the asymptotic competitive ratio of online square packing significantly, raising it from roughly 1.68 to above 1.75.Comment: WAOA 201
    corecore