1,257 research outputs found
ATP-dependent DNA binding, unwinding, and resection by the Mre11/Rad50 complex
ATP-dependent DNA end recognition and nucleolytic processing are central functions of the Mre11/Rad50 (MR) complex in DNA double-strand break repair. However, it is still unclear how ATP binding and hydrolysis primes the MR function and regulates repair pathway choice in cells. Here, Methanococcus jannaschii MR-ATP gamma S-DNA structure reveals that the partly deformed DNA runs symmetrically across central groove between two ATP gamma S-bound Rad50 nucleotide-binding domains. Duplex DNA cannot access the Mre11 active site in the ATP-free full-length MR complex. ATP hydrolysis drives rotation of the nucleotide-binding domain and induces the DNA melting so that the substrate DNA can access Mre11. Our findings suggest that the ATP hydrolysis-driven conformational changes in both DNA and the MR complex coordinate the melting and endonuclease activity.1120Ysciescopu
Crystal Structures of the structure-selective nuclease Mus81-Eme1 bound to flap DNA substrates
The Mus81-Eme1 complex is a structure-selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross-links, replication fork collapse, or double-strand breaks. To explain the molecular basis of 3 ' flap substrate recognition and cleavage mechanism by Mus81-Eme1, we determined crystal structures of human Mus81-Eme1 bound to various flap DNA substrates. Mus81-Eme1 undergoes gross substrate-induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre- and post-nick duplex DNA and (ii) a 5 ' end binding pocket that hosts the 5 ' nicked end of post-nick DNA. These features are crucial for comprehensive protein-DNA interaction, sharp bending of the 3 ' flap DNA substrate, and incision strand placement at the active site. While Mus81-Eme1 unexpectedly shares several common features with members of the 5 ' flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81-Eme1 preferentially cleaves 3 ' flap DNA substrates with 5 ' nicked ends.X11119Ysciescopu
AXTAR: Mission Design Concept
The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing
of compact objects that combines very large collecting area, broadband spectral
coverage, high time resolution, highly flexible scheduling, and an ability to
respond promptly to time-critical targets of opportunity. It is optimized for
submillisecond timing of bright Galactic X-ray sources in order to study
phenomena at the natural time scales of neutron star surfaces and black hole
event horizons, thus probing the physics of ultradense matter, strongly curved
spacetimes, and intense magnetic fields. AXTAR's main instrument, the Large
Area Timing Array (LATA) is a collimated instrument with 2-50 keV coverage and
over 3 square meters effective area. The LATA is made up of an array of
supermodules that house 2-mm thick silicon pixel detectors. AXTAR will provide
a significant improvement in effective area (a factor of 7 at 4 keV and a
factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive
Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray
transients in addition to providing high duty cycle monitoring of the X-ray
sky. We review the science goals and technical concept for AXTAR and present
results from a preliminary mission design study.Comment: 19 pages, 10 figures, to be published in Space Telescopes and
Instrumentation 2010: Ultraviolet to Gamma Ray, Proceedings of SPIE Volume
773
Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT
Pulsars are rapidly-rotating, highly-magnetized neutron stars emitting
radiation across the electromagnetic spectrum. Although there are more than
1800 known radio pulsars, until recently, only seven were observed to pulse in
gamma rays and these were all discovered at other wavelengths. The Fermi Large
Area Telescope makes it possible to pinpoint neutron stars through their
gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind
frequency searches using the LAT. Most of these pulsars are coincident with
previously unidentified gamma-ray sources, and many are associated with
supernova remnants. Direct detection of gamma-ray pulsars enables studies of
emission mechanisms, population statistics and the energetics of pulsar wind
nebulae and supernova remnants.Comment: Corresponding authors: Michael Dormody, Paul S. Ray, Pablo M. Saz
Parkinson, Marcus Ziegle
Observation of the Hadronic Transitions Chi_{b 1,2}(2P) -> omega Upsilon(1S)
The CLEO Collaboration has observed the first hadronic transition among
bottomonium (b bbar) states other than the dipion transitions among vector
states, Upsilon(nS) -> pi pi Upsilon(mS). In our study of Upsilon(3S) decays,
we find a significant signal for Upsilon(3S) -> gamma omega Upsilon(1S) that is
consistent with radiative decays Upsilon(3S) -> gamma chi_{b 1,2}(2P), followed
by chi_{b 1,2} -> omega Upsilon(1S). The branching ratios we obtain are
Br(chi_{b1} -> omega Upsilon(1S) = 1.63 (+0.35 -0.31) (+0.16 -0.15) % and
Br(chi_{b2} -> omega Upsilon(1S) = 1.10 (+0.32 -0.28) (+0.11 - 0.10)%, in which
the first error is statistical and the second is systematic.Comment: submitted to XXI Intern'l Symp on Lepton and Photon Interact'ns at
High Energies, August 2003, Fermila
Rate Measurement of and Constraints on Mixing
We present an observation and rate measurement of the decay D0 -> K+pi-pi0
produced in 9/fb of e+e- collisions near the Upsilon(4S) resonance. The signal
is inconsistent with an upward fluctuation of the background by 4.9 standard
deviations. We measured the rate of D0 -> K+pi-pi0 normalized to the rate of
D0bar -> K+pi-pi0 to be 0.0043 +0.0011 -0.0010 (stat) +/- 0.0007 (syst). This
decay can be produced by doubly-Cabibbo-suppressed decays or by the D0 evolving
into a D0bar through mixing, followed by a Cabibbo-favored decay to K+pi-pi0.
We also found the CP asymmetry A=(8 +25 -22)% to be consistent with zero.Comment: 10 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
First Measurement of Gamma(D*+) and Precision Measurement of m_D*+ - m_D0
We present the first measurement of the D*+ width using 9/fb of e+ e- data
collected near the Upsilon(4S) resonance by the CLEO II.V detector. Our method
uses advanced tracking techniques and a reconstruction method that takes
advantage of the small vertical size of the CESR beam spot to measure the
energy release distribution from the D*+ -> D0 pi+ decay. We find Gamma(D*+) =
96 +- 4 (Statistical) +- 22 (Systematic) keV. We also measure the energy
release in the decay and compute Delta m = m(D*+) - m(D0) = 145.412 +- 0.002
(Statistical) +- 0.012 (Systematic) MeV/c^2Comment: 24 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Branching Fractions of tau Leptons to Three Charged Hadrons
From electron-positron collision data collected with the CLEO detector
operating at CESR near \sqrt{s}=10.6 GeV, improved measurements of the
branching fractions for tau decays into three explicitly identified hadrons and
a neutrino are presented as {\cal
B}(\tau^-\to\pi^-\pi^+\pi^-\nu_\tau)=(9.13\pm0.05\pm0.46)%, {\cal B}(\tau^-\to
K^-\pi^+\pi^-\nu_\tau)=(3.84\pm0.14\pm0.38)\times10^{-3}, {\cal B}(\tau^-\to
K^-K^+\pi^-\nu_\tau)=(1.55\pm0.06\pm0.09)\times10^{-3}, and {\cal B}(\tau^-\to
K^-K^+K^-\nu_\tau)<3.7\times10^{-5} at 90% C.L., where the uncertainties are
statistical and systematic, respectively.Comment: 10 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, to appear in Phys. Rev. Let
Moments of the B Meson Inclusive Semileptonic Decay Rate using Neutrino Reconstruction
We present a measurement of the composition of B meson inclusive semileptonic
decays using 9.4 fb^-1 of e^+e^- data taken with the CLEO detector at the
Upsilon(4S) resonance. In addition to measuring the charged lepton kinematics,
the neutrino four-vector is inferred using the hermiticity of the detector. We
perform a maximum likelihood fit over the full three-dimensional differential
decay distribution for the fractional contributions from the B -> X_c l nu
processes with X_c = D, D*, D**, and nonresonant X_c, and the process B -> X_u
l nu. From the fit results we extract the first and second moments of the M_X^2
and q^2 distributions with minimum lepton-energy requirements of 1.0 GeV and
1.5 GeV. We find = 0.456 +- 0.014 +- 0.045 +- 0.109
(GeV/c^2)^2 with a minimum lepton energy of 1.0 GeV and =
0.293 +- 0.012 +- 0.033 +- 0.048 (GeV/c^2)^2 with minimum lepton energy of 1.5
GeV. The uncertainties are from statistics, detector systematic effects, and
model dependence, respectively. As a test of the HQET and OPE calculations, the
results for the M^X_c moment as a function of the minimum lepton energy
requirement are compared to the predictions.Comment: 26 pages postscript, als available through
http://w4.lns.cornell.edu/public/CLNS/, Submitted to PRD (back-to-back with
following preprint hep-ex/0403053
- …
