681 research outputs found
Defensive alliances in graphs: a survey
A set of vertices of a graph is a defensive -alliance in if
every vertex of has at least more neighbors inside of than outside.
This is primarily an expository article surveying the principal known results
on defensive alliances in graph. Its seven sections are: Introduction,
Computational complexity and realizability, Defensive -alliance number,
Boundary defensive -alliances, Defensive alliances in Cartesian product
graphs, Partitioning a graph into defensive -alliances, and Defensive
-alliance free sets.Comment: 25 page
Emission lines from rotating proto-stellar jets with variable velocity profiles. I. Three-dimensional numerical simulation of the non-magnetic case
Using the Yguazu-a three-dimensional hydrodynamic code, we have computed a
set of numerical simulations of heavy, supersonic, radiatively cooling jets
including variabilities in both the ejection direction (precession) and the jet
velocity (intermittence). In order to investigate the effects of jet rotation
on the shape of the line profiles, we also introduce an initial toroidal
rotation velocity profile, in agreement with some recent observational evidence
found in jets from T Tauri stars which seems to support the presence of a
rotation velocity pattern inside the jet beam, near the jet production region.
Since the Yguazu-a code includes an atomic/ionic network, we are able to
compute the emission coefficients for several emission lines, and we generate
line profiles for the H, [O I]6300, [S II]6716 and [N II]6548 lines. Using
initial parameters that are suitable for the DG Tau microjet, we show that the
computed radial velocity shift for the medium-velocity component of the line
profile as a function of distance from the jet axis is strikingly similar for
rotating and non-rotating jet models. These findings lead us to put forward
some caveats on the interpretation of the observed radial velocity distribution
from a few outflows from young stellar objects, and we claim that these data
should not be directly used as a doubtless confirmation of the
magnetocentrifugal wind acceleration models.Comment: 15 pages, 8 figures. Accepted to publication in Astronomy and
Astrophysic
Estradiol-mediated modulation of memory and of the underlying dendritic spine plasticity through the life span
The morphophysiology of the nervous system changes and adapts in response to external environmental inputs and the experiences of individuals throughout their lives. Other changes in the organisms internal environment can also contribute to nervous system restructuring in the form of plastic changes that underlie its capacity to adapt to emerging psycho-physiological conditions. These adaptive processes lead to subtle modifications of the organisms internal homeostasis which is closely related with the activity of chemical messengers, such as neurotransmitters and hormones.
Hormones reach the brain through the bloodstream, where they activate specific receptors through which certain biochemical, physiological, and morphological changes take place in numerous regions. Fetal development, infancy, puberty, and adulthood are all periods of substantial hormone-mediated brain remodeling in both males and females. Adulthood, specifically, is associated with a broad range of life events, including reproductive cycles in both sexes, and pregnancy and menopause in women. Events of this kind occur concomitantly with eventual modifications in behavioral performance and, especially, in cognitive abilities like learning and memory that underlie, at least in part, plastic changes in the dendritic spines of the neuronal cells in cerebral areas involved in processing cognitive information.
Estrogens form a family that consists of three molecules [17β-estradiol (E2), estrone, estriol] which are deeply involved in regulating numerous bodily functions in different stages of the life-cycle, including the modulation of cognitive performance. This review addresses the effects of E2 on the dendritic spine-mediated synaptic organization of cognitive performance throughout the life span
Filaments in Galactic Winds Driven by Young Stellar Clusters
The starburst galaxy M82 shows a system of H-emitting filaments which
extend to each side of the galactic disk. We model these filaments as the
result of the interaction between the winds from a distribution of Super
Stellar Clusters (SSCs). We first derive the condition necessary for producing
a radiative interaction between the cluster winds (a condition which is met by
the SSC distribution of M82). We then compute 3D simulations for SSC wind
distributions which satisfy the condition for a radiative interaction, and also
for distributions which do not satisfy this condition. We find that the highly
radiative models, that result from the interaction of high metallicity cluster
winds, produce a structure of H emitting filaments, which qualitatively
agrees with the observations of the M82, while the non-radiative SSC wind
interaction models do not produce filamentary structures. Therefore, our
criterion for radiative interactions (which depends on the mass loss rate and
the terminal velocity of the SSC winds, and the mean separation between SSCs)
can be used to predict whether or not an observed galaxy should have associated
H emitting filaments.Comment: 10 pages, 6 Figures. ApJ Accepted, August 7, 200
3D numerical model of the Omega Nebula (M17): simulated thermal X-ray emission
We present 3D hydrodynamical simulations of the superbubble M17, also known
as the Omega nebula, carried out with the adaptive grid code yguazu'-a, which
includes radiative cooling. The superbubble is modelled considering the winds
of 11 individual stars from the open cluster inside the nebula (NGC 6618), for
which there are estimates of the mass loss rates and terminal velocities based
on their spectral types. These stars are located inside a dense interstellar
medium, and they are bounded by two dense molecular clouds.
We carried out three numerical models of this scenario, considering different
line of sight positions of the stars (the position in the plane of the sky is
known, thus fixed). Synthetic thermal X-ray emission maps are calculated from
the numerical models and compared with ROSAT observations of this astrophysical
object. Our models reproduce successfully both the observed X-ray morphology
and the total X-ray luminosity, without taking into account thermal conduction
effects.Comment: 8 pages, 6 figures, accepted for publication in MNRA
On the assessment of non-metallic inclusions by part 13 of API 579 -1/ASME FFS-1 2016
Improvement of nondestructive inspection techniques has allowed more frequent detection of closely spaced zones of non-metallic inclusions in pressure vessels made of low carbon steel. In the present study, closely spaced inclusions in an in-service cylindrical horizontal pressure vessel were detected by Scan-C ultrasonic inspection and considered as laminations to be assessed by Part 13 of the API 579-1/ASME FFS-1 2016 standard. The outcoming results were considered as a rejection for Level 1 assessment, and a repair or replacement of the component was required, even though it retained a significant remaining strength. Thus, an alternative procedure to assess the mechanical integrity of pressure vessels containing zones of non-metallic inclusions is proposed by adopting some criteria of the API 579-1/ASME FFS-1 Part 13 standard procedure and taking into consideration the dimensions and grouping characteristics of the inclusion zones.
 
A latitude-dependent wind model for Mira's cometary head
We present a 3D numerical simulation of the recently discovered cometary
structure produced as Mira travels through the galactic ISM. In our simulation,
we consider that Mira ejects a steady, latitude-dependent wind, which interacts
with a homogeneous, streaming environment. The axisymmetry of the problem is
broken by the lack of alignment between the direction of the relative motion of
the environment and the polar axis of the latitude-dependent wind. With this
model, we are able to produce a cometary head with a ``double bow shock'' which
agrees well with the structure of the head of Mira's comet. We therefore
conclude that a time-dependence in the ejected wind is not required for
reproducing the observed double bow shock.Comment: 4 pages, 4 figures, accepted for publication in ApJ
Plasticity of Dendritic Spines. Not Only for Cognitive Processes
Excitatory synaptic transmission is associated with the input of “new” information at synaptic junctions established by dendritic spines. The role that each type of spine plays in the transmission of the synaptic impulses is different. Indeed, there is a close relationship between the shape of spines and the differential processing of the excitatory synaptic information that is relayed to them, influencing in turn the transmission of synaptic information related to several psychoneural processes
The metric dimension of strong product graphs
For an ordered subset of vertices in a connected graph , the metric representation of a vertex with respect to the set is the -vector , where represents the distance between the vertices and . The set is a metric generator for if every two different vertices of have distinct metric representations with respect to . A minimum metric generator is called a metric basis for and its cardinality, , the metric dimension of . It is well known that the problem of finding the metric dimension of a graph is NP-Hard. In this paper we obtain closed formulae and tight bounds for the metric dimension of strong product graphs.8 página
- …