681 research outputs found

    Defensive alliances in graphs: a survey

    Full text link
    A set SS of vertices of a graph GG is a defensive kk-alliance in GG if every vertex of SS has at least kk more neighbors inside of SS than outside. This is primarily an expository article surveying the principal known results on defensive alliances in graph. Its seven sections are: Introduction, Computational complexity and realizability, Defensive kk-alliance number, Boundary defensive kk-alliances, Defensive alliances in Cartesian product graphs, Partitioning a graph into defensive kk-alliances, and Defensive kk-alliance free sets.Comment: 25 page

    Emission lines from rotating proto-stellar jets with variable velocity profiles. I. Three-dimensional numerical simulation of the non-magnetic case

    Full text link
    Using the Yguazu-a three-dimensional hydrodynamic code, we have computed a set of numerical simulations of heavy, supersonic, radiatively cooling jets including variabilities in both the ejection direction (precession) and the jet velocity (intermittence). In order to investigate the effects of jet rotation on the shape of the line profiles, we also introduce an initial toroidal rotation velocity profile, in agreement with some recent observational evidence found in jets from T Tauri stars which seems to support the presence of a rotation velocity pattern inside the jet beam, near the jet production region. Since the Yguazu-a code includes an atomic/ionic network, we are able to compute the emission coefficients for several emission lines, and we generate line profiles for the H, [O I]6300, [S II]6716 and [N II]6548 lines. Using initial parameters that are suitable for the DG Tau microjet, we show that the computed radial velocity shift for the medium-velocity component of the line profile as a function of distance from the jet axis is strikingly similar for rotating and non-rotating jet models. These findings lead us to put forward some caveats on the interpretation of the observed radial velocity distribution from a few outflows from young stellar objects, and we claim that these data should not be directly used as a doubtless confirmation of the magnetocentrifugal wind acceleration models.Comment: 15 pages, 8 figures. Accepted to publication in Astronomy and Astrophysic

    Estradiol-mediated modulation of memory and of the underlying dendritic spine plasticity through the life span

    Get PDF
    The morphophysiology of the nervous system changes and adapts in response to external environmental inputs and the experiences of individuals throughout their lives. Other changes in the organisms internal environment can also contribute to nervous system restructuring in the form of plastic changes that underlie its capacity to adapt to emerging psycho-physiological conditions. These adaptive processes lead to subtle modifications of the organisms internal homeostasis which is closely related with the activity of chemical messengers, such as neurotransmitters and hormones. Hormones reach the brain through the bloodstream, where they activate specific receptors through which certain biochemical, physiological, and morphological changes take place in numerous regions. Fetal development, infancy, puberty, and adulthood are all periods of substantial hormone-mediated brain remodeling in both males and females. Adulthood, specifically, is associated with a broad range of life events, including reproductive cycles in both sexes, and pregnancy and menopause in women. Events of this kind occur concomitantly with eventual modifications in behavioral performance and, especially, in cognitive abilities like learning and memory that underlie, at least in part, plastic changes in the dendritic spines of the neuronal cells in cerebral areas involved in processing cognitive information. Estrogens form a family that consists of three molecules [17β-estradiol (E2), estrone, estriol] which are deeply involved in regulating numerous bodily functions in different stages of the life-cycle, including the modulation of cognitive performance. This review addresses the effects of E2 on the dendritic spine-mediated synaptic organization of cognitive performance throughout the life span

    Filaments in Galactic Winds Driven by Young Stellar Clusters

    Full text link
    The starburst galaxy M82 shows a system of Hα\alpha-emitting filaments which extend to each side of the galactic disk. We model these filaments as the result of the interaction between the winds from a distribution of Super Stellar Clusters (SSCs). We first derive the condition necessary for producing a radiative interaction between the cluster winds (a condition which is met by the SSC distribution of M82). We then compute 3D simulations for SSC wind distributions which satisfy the condition for a radiative interaction, and also for distributions which do not satisfy this condition. We find that the highly radiative models, that result from the interaction of high metallicity cluster winds, produce a structure of Hα\alpha emitting filaments, which qualitatively agrees with the observations of the M82, while the non-radiative SSC wind interaction models do not produce filamentary structures. Therefore, our criterion for radiative interactions (which depends on the mass loss rate and the terminal velocity of the SSC winds, and the mean separation between SSCs) can be used to predict whether or not an observed galaxy should have associated Hα\alpha emitting filaments.Comment: 10 pages, 6 Figures. ApJ Accepted, August 7, 200

    3D numerical model of the Omega Nebula (M17): simulated thermal X-ray emission

    Full text link
    We present 3D hydrodynamical simulations of the superbubble M17, also known as the Omega nebula, carried out with the adaptive grid code yguazu'-a, which includes radiative cooling. The superbubble is modelled considering the winds of 11 individual stars from the open cluster inside the nebula (NGC 6618), for which there are estimates of the mass loss rates and terminal velocities based on their spectral types. These stars are located inside a dense interstellar medium, and they are bounded by two dense molecular clouds. We carried out three numerical models of this scenario, considering different line of sight positions of the stars (the position in the plane of the sky is known, thus fixed). Synthetic thermal X-ray emission maps are calculated from the numerical models and compared with ROSAT observations of this astrophysical object. Our models reproduce successfully both the observed X-ray morphology and the total X-ray luminosity, without taking into account thermal conduction effects.Comment: 8 pages, 6 figures, accepted for publication in MNRA

    On the assessment of non-metallic inclusions by part 13 of API 579 -1/ASME FFS-1 2016

    Get PDF
    Improvement of nondestructive inspection techniques has allowed more frequent detection of closely spaced zones of non-metallic inclusions in pressure vessels made of low carbon steel. In the present study, closely spaced inclusions in an in-service cylindrical horizontal pressure vessel were detected by Scan-C ultrasonic inspection and considered as laminations to be assessed by Part 13 of the API 579-1/ASME FFS-1 2016 standard. The outcoming results were considered as a rejection for Level 1 assessment, and a repair or replacement of the component was required, even though it retained a significant remaining strength. Thus, an alternative procedure to assess the mechanical integrity of pressure vessels containing zones of non-metallic inclusions is proposed by adopting some criteria of the API 579-1/ASME FFS-1 Part 13 standard procedure and taking into consideration the dimensions and grouping characteristics of the inclusion zones.    &nbsp

    A latitude-dependent wind model for Mira's cometary head

    Full text link
    We present a 3D numerical simulation of the recently discovered cometary structure produced as Mira travels through the galactic ISM. In our simulation, we consider that Mira ejects a steady, latitude-dependent wind, which interacts with a homogeneous, streaming environment. The axisymmetry of the problem is broken by the lack of alignment between the direction of the relative motion of the environment and the polar axis of the latitude-dependent wind. With this model, we are able to produce a cometary head with a ``double bow shock'' which agrees well with the structure of the head of Mira's comet. We therefore conclude that a time-dependence in the ejected wind is not required for reproducing the observed double bow shock.Comment: 4 pages, 4 figures, accepted for publication in ApJ

    Plasticity of Dendritic Spines. Not Only for Cognitive Processes

    Get PDF
    Excitatory synaptic transmission is associated with the input of “new” information at synaptic junctions established by dendritic spines. The role that each type of spine plays in the transmission of the synaptic impulses is different. Indeed, there is a close relationship between the shape of spines and the differential processing of the excitatory synaptic information that is relayed to them, influencing in turn the transmission of synaptic information related to several psychoneural processes

    The metric dimension of strong product graphs

    Get PDF
    For an ordered subset S={s1,s2,sk}S = \{s_1, s_2,\dots s_k\} of vertices in a connected graph GG, the metric representation of a vertex uu with respect to the set SS is the kk-vector r(uS)=(dG(v,s1),dG(v,s2),, r(u|S)=(d_G(v,s_1), d_G(v,s_2),\dots, dG(v,sk))d_G(v,s_k)), where dG(x,y)d_G(x,y) represents the distance between the vertices xx and yy. The set SS is a metric generator for GG if every two different vertices of GG have distinct metric representations with respect to SS. A minimum metric generator is called a metric basis for GG and its cardinality, dim(G)dim(G), the metric dimension of GG. It is well known that the problem of finding the metric dimension of a graph is NP-Hard. In this paper we obtain closed formulae and tight bounds for the metric dimension of strong product graphs.8 página
    corecore