54 research outputs found

    Dual energy imaging and intracycle motion correction for CT coronary angiography in patients with intermediate to high likelihood of coronary artery disease

    Get PDF
    We explored whether intracycle motion correction algorithms (MCAs) might be applicable to dual energy computed tomography coronary angiography in patients with intermediate to high likelihood of coronary artery disease. MCA reconstructions were associated with higher interpretability rates (96.7% vs 87.9%, P < .001), image quality scores (4.12±0.9 vs. 3.76±1.0; P < .0001), and diagnostic performance [area under the curve of 0.95 (95% confidence interval [CI] 0.92-0.97) vs 0.89 (95% CI 0.86-0.92); P < .0001] compared to conventional reconstructions. In conclusion, application of intracycle MCA reconstructions to dual energy computed tomography acquisitions was feasible and resulted in significantly higher image quality scores, interpretability, and diagnostic performance.Fil: Carrascosa, Patricia. Diagnóstico Maipú; ArgentinaFil: Deviggiano, Alejandro. Diagnóstico Maipú; ArgentinaFil: Leipsic, Jonathon A.. St. Paul's Hospital; CanadáFil: Capunay, Carlos. Diagnóstico Maipú; ArgentinaFil: De Zan, Macarena C.. Diagnóstico Maipú; ArgentinaFil: Goldsmit, Alejandro. Sanatorio Güemes; ArgentinaFil: Rodriguez Granillo, Gaston Alfredo. Diagnóstico Maipú; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; Argentin

    Arctic marine forest distribution models showcase potentially severe habitat losses for cryophilic species under climate change

    Get PDF
    The Arctic is among the fastest-warming areas of the globe. Understanding the impact of climate change on foundational Arctic marine species is needed to provide insight on ecological resilience at high latitudes. Marine forests, the underwater seascapes formed by seaweeds, are predicted to expand their ranges further north in the Arctic in a warmer climate. Here, we investigated whether northern habitat gains will compensate for losses at the southern range edge by modelling marine forest distributions according to three distribution categories: cryophilic (species restricted to the Arctic environment), cryotolerant (species with broad environmental preferences inclusive but not limited to the Arctic environment), and cryophobic (species restricted to temperate conditions) marine forests. Using stacked MaxEnt models, we predicted the current extent of suitable habitat for contemporary and future marine forests under Representative Concentration Pathway Scenarios of increasing emissions (2.6, 4.5, 6.0, and 8.5). Our analyses indicate that cryophilic marine forests are already ubiquitous in the north, and thus cannot expand their range under climate change, resulting in an overall loss of habitat due to severe southern range contractions. The extent of marine forests within the Arctic basin, however, is predicted to remain largely stable under climate change with notable exceptions in some areas, particularly in the Canadian Archipelago. Succession may occur where cryophilic and cryotolerant species are extirpated at their southern range edge, resulting in ecosystem shifts towards temperate regimes at mid to high latitudes, though many aspects of these shifts, such as total biomass and depth range, remain to be field validated. Our results provide the first global synthesis of predicted changes to pan-Arctic coastal marine forest ecosystems under climate change and suggest ecosystem transitions are unavoidable now for some areas.publishedVersio

    Kelp in the Eastern Canadian Arctic: current and future predictions of habitat suitability and cover

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goldsmit, J., Schlegel, R. W., Filbee-Dexter, K., MacGregor, K. A., Johnson, L. E., Mundy, C. J., Savoie, A. M., McKindsey, C. W., Howland, K. L., & Archambault, P. Kelp in the Eastern Canadian Arctic: current and future predictions of habitat suitability and cover. Frontiers in Marine Science, 18, (2021): 742209. https://doi.org/10.3389/fmars.2021.742209Climate change is transforming marine ecosystems through the expansion and contraction of species’ ranges. Sea ice loss and warming temperatures are expected to expand habitat availability for macroalgae along long stretches of Arctic coastlines. To better understand the current distribution of kelp forests in the Eastern Canadian Arctic, kelps were sampled along the coasts for species identifications and percent cover. The sampling effort was supplemented with occurrence records from global biodiversity databases, searches in the literature, and museum records. Environmental information and occurrence records were used to develop ensemble models for predicting habitat suitability and a Random Forest model to predict kelp cover for the dominant kelp species in the region – Agarum clathratum, Alaria esculenta, and Laminariaceae species (Laminaria solidungula and Saccharina latissima). Ice thickness, sea temperature and salinity explained the highest percentage of kelp distribution. Both modeling approaches showed that the current extent of arctic kelps is potentially much greater than the available records suggest. These modeling approaches were projected into the future using predicted environmental data for 2050 and 2100 based on the most extreme emission scenario (RCP 8.5). The models agreed that predicted distribution of kelp in the Eastern Canadian Arctic is likely to expand to more northern locations under future emissions scenarios, with the exception of the endemic arctic kelp L. solidungula, which is more likely to lose a significant proportion of suitable habitat. However, there were differences among species regarding predicted cover for both current and future projections. Notwithstanding model-specific variation, it is evident that kelps are widespread throughout the area and likely contribute significantly to the functioning of current Arctic ecosystems. Our results emphasize the importance of kelp in Arctic ecosystems and the underestimation of their potential distribution there.This work was supported by ArcticNet (P101 ArcticKelp), Fisheries and Oceans Canada Arctic Climate Change Adaptation Strategy, Arctic Science and Aquatic Invasive Species Monitoring and Research Funds, the Natural Sciences and Engineering Research Council (NSERC), NRCan Polar Continental Shelf Program Support, Canadian Aquatic Invasive Species Network (CAISN), the Nunavut Marine Region Wildlife Management Board (NWMB), Quebec-Ocean, and the Ocean Frontier Institute through an award from the Canada First Research Excellence Fund, the Marine Environmental Observation, Prediction and Response Network of Centres of Excellence’s (MEOPAR-NCE) Southampton Island Marine Ecosystem Project, and the Belmont Forum–BiodivERsA’s De-icing of Arctic Coasts: critical or new opportunities for marine biodiversity and Ecosystem Services (ACCES). KF-D was supported by the Australian Research Council (DE190100692)

    Sea Ice and Substratum Shape Extensive Kelp Forests in the Canadian Arctic

    Get PDF
    The coastal zone of the Canadian Arctic represents 10% of the world’s coastline and is one of the most rapidly changing marine regions on the planet. To predict the consequences of these environmental changes, a better understanding of how environmental gradients shape coastal habitat structure in this area is required. We quantified the abundance and diversity of canopy forming seaweeds throughout the nearshore zone (5–15 m) of the Eastern Canadian Arctic using diving surveys and benthic collections at 55 sites distributed over 3,000 km of coastline. Kelp forests were found throughout, covering on average 40.4% (±29.9 SD) of the seafloor across all sites and depths, despite thick sea ice and scarce hard substrata in some areas. Total standing macroalgal biomass ranged from 0 to 32 kg m–2 wet weight and averaged 3.7 kg m–2 (±0.6 SD) across all sites and depths. Kelps were less abundant at depths of 5 m compared to 10 or 15 m and distinct regional assemblages were related to sea ice cover, substratum type, and nutrient availability. The most common community configuration was a mixed assemblage of four species: Agarum clathratum (14.9% benthic cover ± 12.0 SD), Saccharina latissima (13% ± 14.7 SD), Alaria esculenta (5.4% ± 1.2 SD), and Laminaria solidungula (3.7% ± 4.9 SD). A. clathratum dominated northernmost regions and S. latissima and L. solidungula occurred at high abundance in regions with more open water days. In southeastern areas along the coast of northern Labrador, the coastal zone was mainly sea urchin barrens, with little vegetation. We found positive relationships between open water days (days without sea ice) and kelp biomass and seaweed diversity, suggesting kelp biomass could increase, and the species composition of kelp forests could shift, as sea ice diminishes in some areas of the Eastern Canadian Arctic. Our findings demonstrate the high potential productivity of this extensive coastal zone and highlight the need to better understand the ecology of this system and the services it provides.publishedVersio

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    Get PDF
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium-and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a 'very high risk' of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate 'rapid' management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement. Decision support tools AS-ISK Hazard identification Non-native species Risk analysis Climate changepublishedVersio

    A Modeling Framework to Describe the Transmission of Bluetongue Virus within and between Farms in Great Britain

    Get PDF
    Recently much attention has been given to developing national-scale micro-simulation models for livestock diseases that can be used to predict spread and assess the impact of control measures. The focus of these models has been on directly transmitted infections with little attention given to vector-borne diseases such as bluetongue, a viral disease of ruminants transmitted by Culicoides biting midges. Yet BT has emerged over the past decade as one of the most important diseases of livestock.We developed a stochastic, spatially-explicit, farm-level model to describe the spread of bluetongue virus (BTV) within and between farms. Transmission between farms was modeled by a generic kernel, which includes both animal and vector movements. Once a farm acquired infection, the within-farm dynamics were simulated based on the number of cattle and sheep kept on the farm and on local temperatures. Parameter estimates were derived from the published literature and using data from the outbreak of bluetongue in northern Europe in 2006. The model was validated using data on the spread of BTV in Great Britain during 2007. The sensitivity of model predictions to the shape of the transmission kernel was assessed.The model is able to replicate the dynamics of BTV in Great Britain. Although uncertainty remains over the precise shape of the transmission kernel and certain aspects of the vector, the modeling approach we develop constitutes an ideal framework in which to incorporate these aspects as more and better data become available. Moreover, the model provides a tool with which to examine scenarios for the spread and control of BTV in Great Britain

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    Get PDF
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium- and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a ‘very high risk’ of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate ‘rapid’ management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement.publishedVersio

    Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis.

    Get PDF
    Molecular, genetic and pathological evidence suggests that deficits in GABAergic parvalbumin-positive interneurons contribute to schizophrenia pathophysiology through alterations in the brain's excitation-inhibition balance that result in impaired behaviour and cognition. Although the factors that trigger these deficits are diverse, there is increasing evidence that they converge on a common pathological hub that involves NMDA receptor hypofunction and oxidative stress. These factors have been separately linked to schizophrenia pathogenesis, but evidence now suggests that they are mechanistically interdependent and contribute to a common schizophrenia-associated pathology

    Monochromatic image reconstruction by dual energy imaging allows half iodine load computed tomography coronary angiography

    No full text
    Purpose: To compare image interpretability and diagnostic performance of dual-energy CT coronary angiography (DE-CTCA) performed with 50% iodine load reduction versus single energy acquisitions (SE-CTCA) with full iodine load. Materials and methods: The present prospective study involved patients with suspected coronary artery disease (CAD) clinically referred for CTCA. DE-CTCA with 50% iodine volume load was performed first, and after heart rate returned to baseline SE-CTCA was performed using full iodine volume load. The primary endpoint was to compare image interpretability between groups. DE-CTCA was performed by rapid switching between low and high tube potentials (80–140 kV) from a single source, allowing the generation of monochromatic image reconstructions ranging from 40 to 140 keV. Image quality assessment was performed using a 5-point Likert scale. Results: Thirty-six patients constituted the study population. The mean heart rate before the CT scan (DE-CTCA 57.3 ± 10.7 bpm vs. SE-CTCA 58.5 ± 11.2 bpm, p = 0.29) and the mean effective radiation dose (3.5 ± 1.9 mSv vs. 3.8 ± 0.9 mSv, p = 0.48) did not differ between groups. Likert image quality scores were similar between groups (DE-CTCA 4.42 ± 0.98 vs. SE-CTCA 4.43 ± 0.84, p = 0.67). Signal-to-noise and contrast-to-noise ratios were significantly lower with DE-CTCA, driven by lower signal density levels at 60 keV compared to SE-CTCA. The sensitivity and specificity for the detection of stenosis >50% was indistinguishable between groups (DE-CTCA 84.4% (69.9–93.0%), 87.1% (81.6–91.2%); SE-CTCA 84.4% (69.9–93.0%), 87.1% (81.6–91.2%). Conclusions: In this pilot, prospective study, dual energy CTCA imaging with half iodine load achieved comparable interpretability than full iodine load with single energy CTCA.Fil: Carrascosa, Patricia. Diagnostico Maipu; ArgentinaFil: Leipsic, Jonathon A.. St. Paul's Hospital; CanadáFil: Capunay, Carlos. Diagnostico Maipu; ArgentinaFil: Deviggiano, Alejandro. Diagnostico Maipu; ArgentinaFil: Vallejos, Javier. Diagnostico Maipu; ArgentinaFil: Goldsmit, Alejandro. Sanatorio Güemes; ArgentinaFil: Rodriguez Granillo, Gaston Alfredo. Diagnostico Maipu; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore