951 research outputs found
Symmetric Submodular Function Minimization Under Hereditary Family Constraints
We present an efficient algorithm to find non-empty minimizers of a symmetric
submodular function over any family of sets closed under inclusion. This for
example includes families defined by a cardinality constraint, a knapsack
constraint, a matroid independence constraint, or any combination of such
constraints. Our algorithm make oracle calls to the submodular
function where is the cardinality of the ground set. In contrast, the
problem of minimizing a general submodular function under a cardinality
constraint is known to be inapproximable within (Svitkina
and Fleischer [2008]).
The algorithm is similar to an algorithm of Nagamochi and Ibaraki [1998] to
find all nontrivial inclusionwise minimal minimizers of a symmetric submodular
function over a set of cardinality using oracle calls. Their
procedure in turn is based on Queyranne's algorithm [1998] to minimize a
symmetric submodularComment: 13 pages, Submitted to SODA 201
Hypergraphic LP Relaxations for Steiner Trees
We investigate hypergraphic LP relaxations for the Steiner tree problem,
primarily the partition LP relaxation introduced by Koenemann et al. [Math.
Programming, 2009]. Specifically, we are interested in proving upper bounds on
the integrality gap of this LP, and studying its relation to other linear
relaxations. Our results are the following. Structural results: We extend the
technique of uncrossing, usually applied to families of sets, to families of
partitions. As a consequence we show that any basic feasible solution to the
partition LP formulation has sparse support. Although the number of variables
could be exponential, the number of positive variables is at most the number of
terminals. Relations with other relaxations: We show the equivalence of the
partition LP relaxation with other known hypergraphic relaxations. We also show
that these hypergraphic relaxations are equivalent to the well studied
bidirected cut relaxation, if the instance is quasibipartite. Integrality gap
upper bounds: We show an upper bound of sqrt(3) ~ 1.729 on the integrality gap
of these hypergraph relaxations in general graphs. In the special case of
uniformly quasibipartite instances, we show an improved upper bound of 73/60 ~
1.216. By our equivalence theorem, the latter result implies an improved upper
bound for the bidirected cut relaxation as well.Comment: Revised full version; a shorter version will appear at IPCO 2010
Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequalities
Quantum theory imposes a strict limit on the strength of non-local
correlations. It only allows for a violation of the CHSH inequality up to the
value 2 sqrt(2), known as Tsirelson's bound. In this note, we consider
generalized CHSH inequalities based on many measurement settings with two
possible measurement outcomes each. We demonstrate how to prove Tsirelson
bounds for any such generalized CHSH inequality using semidefinite programming.
As an example, we show that for any shared entangled state and observables
X_1,...,X_n and Y_1,...,Y_n with eigenvalues +/- 1 we have | + <X_2
Y_1> + + + ... + - | <= 2 n
cos(pi/(2n)). It is well known that there exist observables such that equality
can be achieved. However, we show that these are indeed optimal. Our approach
can easily be generalized to other inequalities for such observables.Comment: 9 pages, LateX, V2: Updated reference [3]. To appear in Physical
Review
Scheduling over Scenarios on Two Machines
We consider scheduling problems over scenarios where the goal is to find a
single assignment of the jobs to the machines which performs well over all
possible scenarios. Each scenario is a subset of jobs that must be executed in
that scenario and all scenarios are given explicitly. The two objectives that
we consider are minimizing the maximum makespan over all scenarios and
minimizing the sum of the makespans of all scenarios. For both versions, we
give several approximation algorithms and lower bounds on their
approximability. With this research into optimization problems over scenarios,
we have opened a new and rich field of interesting problems.Comment: To appear in COCOON 2014. The final publication is available at
link.springer.co
Application of semidefinite programming to maximize the spectral gap produced by node removal
The smallest positive eigenvalue of the Laplacian of a network is called the
spectral gap and characterizes various dynamics on networks. We propose
mathematical programming methods to maximize the spectral gap of a given
network by removing a fixed number of nodes. We formulate relaxed versions of
the original problem using semidefinite programming and apply them to example
networks.Comment: 1 figure. Short paper presented in CompleNet, Berlin, March 13-15
(2013
Approximating k-Forest with Resource Augmentation: A Primal-Dual Approach
In this paper, we study the -forest problem in the model of resource
augmentation. In the -forest problem, given an edge-weighted graph ,
a parameter , and a set of demand pairs , the
objective is to construct a minimum-cost subgraph that connects at least
demands. The problem is hard to approximate---the best-known approximation
ratio is . Furthermore, -forest is as hard to
approximate as the notoriously-hard densest -subgraph problem.
While the -forest problem is hard to approximate in the worst-case, we
show that with the use of resource augmentation, we can efficiently approximate
it up to a constant factor.
First, we restate the problem in terms of the number of demands that are {\em
not} connected. In particular, the objective of the -forest problem can be
viewed as to remove at most demands and find a minimum-cost subgraph that
connects the remaining demands. We use this perspective of the problem to
explain the performance of our algorithm (in terms of the augmentation) in a
more intuitive way.
Specifically, we present a polynomial-time algorithm for the -forest
problem that, for every , removes at most demands and has
cost no more than times the cost of an optimal algorithm
that removes at most demands
Node-weighted Steiner tree and group Steiner tree in planar graphs
We improve the approximation ratios for two optimization problems in planar graphs. For node-weighted Steiner tree, a classical network-optimization problem, the best achievable approximation ratio in general graphs is Θ [theta] (logn), and nothing better was previously known for planar graphs. We give a constant-factor approximation for planar graphs. Our algorithm generalizes to allow as input any nontrivial minor-closed graph family, and also generalizes to address other optimization problems such as Steiner forest, prize-collecting Steiner tree, and network-formation games.
The second problem we address is group Steiner tree: given a graph with edge weights and a collection of groups (subsets of nodes), find a minimum-weight connected subgraph that includes at least one node from each group. The best approximation ratio known in general graphs is O(log3 [superscript 3] n), or O(log2 [superscript 2] n) when the host graph is a tree. We obtain an O(log n polyloglog n) approximation algorithm for the special case where the graph is planar embedded and each group is the set of nodes on a face. We obtain the same approximation ratio for the minimum-weight tour that must visit each group
Physical accessible transformations on a finite number of quantum states
We consider to treat the usual probabilistic cloning, state separation,
unambiguous state discrimination, \emph{etc} in a uniform framework. All these
transformations can be regarded as special examples of generalized completely
positive trace non-increasing maps on a finite number of input states. From the
system-ancilla model we construct the corresponding unitary implementation of
pure pure, pure mixed, mixed pure, and mixed mixed
states transformations in the whole system and obtain the necessary and
sufficient conditions on the existence of the desired maps. We expect our work
will be helpful to explore what we can do on a finite set of input states.Comment: 7 page
Translational and Regulatory Challenges for Exon Skipping Therapies
Several translational challenges are currently impeding the therapeutic development of antisense-mediated exon skipping approaches for rare diseases. Some of these are inherent to developing therapies for rare diseases, such as small patient numbers and limited information on natural history and interpretation of appropriate clinical outcome measures. Others are inherent to the antisense oligonucleotide (AON)-mediated exon skipping approach, which employs small modified DNA or RNA molecules to manipulate the splicing process. This is a new approach and only limited information is available on long-term safety and toxicity for most AON chemistries. Furthermore, AONs often act in a mutation-specific manner, in which case multiple AONs have to be developed for a single disease. A workshop focusing on preclinical development, trial design, outcome measures, and different forms of marketing authorization was organized by the regulatory models and biochemical outcome measures working groups of Cooperation of Science and Technology Action: "Networking towards clinical application of antisense-mediated exon skipping for rare diseases." The workshop included participants from patient organizations, academia, and members of staff from the European Medicine Agency and Medicine Evaluation Board (the Netherlands). This statement article contains the key outcomes of this meeting.status: publishe
- …
