Node-Weighted Steiner Tree and
Group Steiner Tree in Planar Graphs

Erik D. Demaine!, MohammadTaghi HajiaghayiZ, and Philip N. Klein?

L MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA, edemaine@mit.edu
2 AT&T Labs — Research,
180 Park Ave., Florham Park, NJ 07932, USA, hajiagha@Qresearch.att.com
3 Department of Computer Science, Brown University,
Providence, RI 02912, USA, klein@cs.brown.edu

Abstract. We improve the approximation ratios for two optimization
problems in planar graphs. For node-weighted Steiner tree, a classical
network-optimization problem, the best achievable approximation ra-
tio in general graphs is ©(logn), and nothing better was previously
known for planar graphs. We give a constant-factor approximation for
planar graphs. Our algorithm generalizes to allow as input any nontriv-
ial minor-closed graph family, and also generalizes to address other op-
timization problems such as Steiner forest, prize-collecting Steiner tree,
and network-formation games.

The second problem we address is group Steiner tree: given a graph
with edge weights and a collection of groups (subsets of nodes), find
a minimum-weight connected subgraph that includes at least one node
from each group. The best approximation ratio known in general graphs
is O(log®n), or O(log?n) when the host graph is a tree. We obtain an
O(log n polyloglog n) approximation algorithm for the special case where
the graph is planar embedded and each group is the set of nodes on a
face. We obtain the same approximation ratio for the minimum-weight
tour that must visit each group.

1 Introduction

One of the most fundamental problems in combinatorial optimization is the
network Steiner tree problem. This was one of the first problems shown NP-hard
by Karp [19]. In the traditional formulation, we are given an undirected graph
with edge costs and a subset of nodes called terminals. The goal is to find a
minimum-cost subgraph of G that connects the terminals. A long sequence of
papers give polynomial-time constant-factor approximation algorithms for this
problem; the current best approximation ratio is 1.55 [3].

The generalizatiorﬁ of network Steiner tree in which the nodes are also as-
signed costs is of both practical and theoretical significance. On the practical
side, in telecommunications for example, expensive equipment such as routers

4 The case of both edge costs and node costs can be reduced to the case of node costs.

https://core.ac.uk/display/4426162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
edemaine@mit.edu
hajiagha@research.att.com
klein@cs.brown.edu

and switches are at the nodes of the underlying network and it is natural to
model such problems as node-weighted. On the theoretical side, node-weighted
versions of many classic edge-weighted problems have been considered by many
authors so far; see, e.g., [RITOIBIIT7I22] for some recent work.

Unfortunately, set cover can be reduced to node-weighted Steiner tree in
general graphs, so an approximation ratio better than Inn is not achievable in
polynomial time unless P = NP [9)26]. Klein and Ravi [20] gave a polynomial-
time approximation algorithm with a performance ratio of O(logn), so this result
is within a constant factor of optimal. To achieve a better bound, we must restrict
the class of inputs.

A natural restriction is planarity. In practical scenarios of physical network-
ing, with cable or fiber embedded in the ground, crossings are rare or nonexistent.
Somewhat surprisingly, no one has yet addressed this classic problem of node-
weighted Steiner tree in this natural class of graphs. In this paper, we achieve a
much better approximation ratio for this problem:

Theorem 1. There is a polynomial-time 6-approximation algorithm for node-
weighted Steiner tree in planar graphs.

Our algorithm is a simple and natural extension of primal-dual techniques
to node weights, which to our knowledge has never been explored. We suspect
that the factor 6 can be improved.

In fact, our result is more general in two senses: we show that a constant
approximation ratio is achievable for a much broader family of graphs, and we
show that a much more general optimization problem can be approximated.

1.1 Broader Graph Classes. A minor of a graph G is a graph obtainable
from G by deleting and contracting edges.

It is well-known that planar graphs are the graphs with no minor isomorphic
to K33 or Ks. More generally, for any graph H, we can consider the family
of graphs excluding H as a minor. We obtain the following generalization of
Theorem [1l

Theorem 2. For any graph H, there is a constant cy and a polynomial-time
cyg -approzimation algorithm for node-weighted Steiner tree on H-minor-free
graphs.

1.2 More Network-Design Problems. Our algorithm can solve a broader
range of network-design problems. The node-weighted Steiner forest problem
takes as input an undirected graph with node costs and a set of unordered pairs
{si,t;} of nodes. The goal is to find the minimum-cost network that includes
a path between each given pair of nodes. For the edge-weighted case, there is
a polynomial-time 2-approximation algorithm [2]. For the node-weighted case,
an O(logn)-approximation can be achieved [20]. In this paper, we achieve a
constant-factor approximation for planar graphs, and more generally, graphs
excluding a fixed minor.

Theorem 3. There is a polynomial-time 6-approzimation algorithm for node-
weighted Steiner forest in planar graphs. For any graph H, there is a constant
cy and a polynomial-time cy-approzimation algorithm for this problem on H-
minor-free graphs.

More generally, in Section [2] we show how our framework applies to a node-
weighted variation of proper 0-1 functions by Goemans and Williamson [I2].
These functions model node-weighted versions of several other problems, e.g.,
T'-joins and nonfixed point-to-point connections. We thus obtain constant-factor
approximation algorithms for all of these problems when the input is restricted
to be a planar graph or a graph excluding a fixed minor.

We also consider the prize-collecting version of Steiner tree, where some ter-
minal pairs can remain disconnected, but we pay a specific penalty for each such
pair. The best approximation algorithm for this problem achieves an O(logn)
approximation ratio [25]. (See also the related work on the dual quota version
of the problem [15)25].) Similar to [7JI6], we can prove the following:

Theorem 4. The prize-collecting Steiner forest problem has a constant-factor
approzimation algorithm in graphs excluding a fized minor.

1.3 Other Applications. Node-weighted Steiner tree is a network design
problem with many practical applications and theoretical implications. Enumer-
ating such applications is beyond the scope of this paper. We point out, however,
that it has an application even in network formation games.

Anshelevich et al. [4] consider a network formation game in which k terminals
(players) buy edges in a directed graph, equally sharing the unit cost of an edge
bought by multiple players, to form a Steiner tree. They prove that the price of
stability in this game is at most Hy (the kth harmonic number, which is within an
additive 1 of In k) by defining a dynamics that converges to an equilibrium within
an Hy factor of the social optimum. However, their dynamics [4, Theorem 2.2]
starts by computing an optimal Steiner tree, which cannot even be efficiently
approximated. With our results, we can obtain a polynomially computable Nash
equilibrium within an Hj factor of the social optimum for their game in node-
weighted undirected planar graphs. Furthermore, this bound is tight: there is a
node-weighted graph whose only Nash equilibrium is a factor Hj worse than the
social optimumEI

1.4 Planar Group Steiner Tree. In the wire-routing phase of VLSI design,
a net is a set of pins on the boundaries of various components that must be
connected. A minimum-length Steiner tree is a natural choice for routing the
net. (The routing must avoid previously routed nets and other obstacles.) Reich
and Widmayer [27] observed that, for each component, there is flexibility as to

5 The graph has terminals t1,t2, . . ., tx, additional nodes w1, uz, . .., ur, where u; has
weight 1/, and another node v of weight 1 + €. Each terminal ¢; has two candidate
paths to the root r, one through u; and the other through v. (This construction is
similar to [4] Figure 1].) The social optimum buys v at cost 1 + ¢, but the Nash
equilibrium buys w1, us, ..., ur at cost Hy.

the location of the pin used, and that the routing of the net should exploit that
flexibility.

With that as motivation, they introduced the group Steiner tree problem: we
are given a graph G with edge weights, and a collection g1, ¢go, ..., gr of node
sets called groups. The goal is to find a minimum-weight connected subgraph of
G that contains at least one node from each group.

Much research has gone into finding good approximation algorithms for
this problem. For general graphs, the best approximation ratio known to be
achievable in polynomial time [I1] is O(log® n), and for trees, the best known is
O(log® n).

Even when the host graph is a tree and hence planar, the problem cannot be
approximated better than £2(log> ¢ n) unless NP admits quasipolynomial-time
Las Vegas algorithms [I8]. It would thus appear that restricting the input to
planar graphs cannot lead to a substantially improved approximation.

Returning to the origin of the problem provides some inspiration. In a VLSI
instance, the elements of a single group are all located on the boundary of a
component, which occupies a region on the plane. Motivated by this real-world
restriction, we define an instance of the planar group Steiner tree problem to
be a planar embedded graph G with edge weights, and a collection of groups
g1,92, - - -, gk and corresponding distinct faces fi, fa,..., fr of G, such that the
nodes belonging to each group g; lie on the boundary of the corresponding face f;.

We can without loss of generality require that each group g; consists of exactly
the nodes on the boundary of f;. (The more general problem can be reduced to
this one by the introduction of high-weight edges.) Therefore, an equivalent and
more concise definition of an instance of planar group Steiner tree is a planar
embedded graph G and a set of faces f1, fa,..., fx, which implicitly define a
group for each f; consisting of the nodes on the boundary of f;.

Theorem 5. Planar group Steiner tree has a polynomial-time O(logn
polyloglog n)-approzimation algorithm.

Our proof of this theorem uses probabilistic embedding into spanning trees
with expected distortion O(logn loglogn(logloglogn)?) [1]. (We cannot use the
original result of Bartal [6] which does not preserve the planar structure of the
problem.) On trees, we can solve the problem via dynamic programming. Alter-
natively, because paths in trees cannot properly cross, we can use the following
rounding result of independent interest:

Theorem 6. Any solution f to the noncrossing-flow relaxation of directed
Steiner tree can be converted in polynomial time into an integral solution f”

of weight c(f") < 6c(f).

Recall the directed Steiner tree problem: we are given a directed graph G with
edge costs, a sink node s, and a set T' of terminal nodes. The goal is to find a
minimum-cost subgraph of G that, for each terminal ¢;, contains a directed path
from ¢; to s. The noncrossing-flow variation is a natural relaxation of directed
Steiner tree in planar graphs, a kind of minimum-cost flow where flow paths

cannot cross; see Appendix [A] Using a novel approach for rounding such planar
flows, we show that a (fractional) solution to this noncrossing relaxation can be
converted into an (integral) directed Steiner tree whose cost is at most 6 times
the value of the solution to the relaxation.

Unfortunately, we do not know a polynomial-time algorithm for finding an
optimal solution to the noncrossing-flow formulation for an arbitrary planar
instance of directed Steiner tree. Such a result would yield a constant-factor
approximation algorithm for planar directed Steiner tree.

Related Work. Motivated in part by the VLSI application, Mata and Mitchell
[23] consider the following problem: given a set of n polygonal regions in the
plane, find a tour that visits at least one point from each region. They describe
this problem as a special case of the problem TSP with neighborhoods (also called
group TSP). They give a polynomial-time O(logn)-approximation algorithm.
Because the tour contains a spanning tree, and doubling each edge of a tree
yields a tour, it is also an approximation algorithm for group Steiner tree where
the groups are the polygonal regions. Gudmundsson and Levcopoulos [14] gave
a faster algorithm for the same problem. No known polynomial-time algorithm
achieves an approximation ratio better than ©(logn) for this problem. On the
lower-bound side, unless P = NP, no constant-factor approximation is possible
for disjoint disconnected regions, and no (2 — ¢)-approximation is possible for
(nondisjoint) connected regions [28].

Arkin and Hassin [5] gave constant-factor approximation algorithms for the
special cases of parallel unit-length line segments, translated copies of a polygonal
region, and circles. Mitchell [24] recently gave a PTAS for group TSP when the
groups are disjoint and “fat”.

Our bound for planar group Steiner tree nearly matches the bound of Mata
and Mitchell. Our approach has the advantage that planar graphs can capture
metrics that are not captured by the FEuclidean metric, useful e.g. in the VLSI
problem where the routing of a net must avoid obstacles and previously routed
nets.

2 Node-Weighted Network Design in Planar and
Minor-Excluding Graphs

For a graph G and a set S of nodes, we use G[S] to denote the subgraph of G
induced by the nodes of S.

To formulate the node-weighted network-design problems we address, we
adapt an approach due to Goemans and Williamson [12].

Proper Function. Let V be the set of nodes in an undirected graph G. A
function f :2Y — {0,1} is proper if f()) = 0 and the following two properties
hold:

1. (Symmetry) f(S) = f(V —5).
2. (Disjointness) If S; and Sy are disjoint, then f(S;) = f(S2) = 0 implies
f(S1USy)=0.

In [I2], proper functions are used in a formulation of edge-weighted network-
design problems as cut-covering problems. A proper function specifies a family
of cuts, and the goal is to minimize the cost of a set of edges that covers all cuts
in this family.

Following Klein and Ravi [20], we adapt this formulation for node-weighted
problems. We use I'(S) to denote the set of nodes that are not in S but have
neighbors in S. The problems we address can be formulated by the following
integer linear program with a variable x(v) for each node v € V:

minimize) o w(v) z(v)
subject to 3, c pg) (v) = f(S) for all S C 'V, (1)
xz(v) € {0,1} forallv e V.

where f is a proper 0-1 function. The minimum solution z to this integer program
assigns 1’s to a subset X of nodes, and X is then considered the solution to
the network-design problem. Conversely, a subset X of nodes is considered a
feasible solution if the corresponding {0, 1}-assignment to nodes of G satisfies
the inequalities.

For example, consider the node-weighted Steiner forest problem. The input
is an undirected graph G with node weights w(v), and a set of pairs {s;,t;}
of nodes. For a set S of nodes, define f(S) to be 1 if, for some pair {s;,t;}, S
contains one element of the pair but not the other. Otherwise, define f(S) to be
0. It is easy to verify that this function is proper. To see that the solution to the
integer linear program is a solution to the Steiner forest instance, assume for a
contradiction that some pair s;,t; are not connected via nodes assigned 1’s by
x. Let S be the set of nodes connected to s; via such nodes. By our assumption,
f(S) > 1 but by the choice of S, every node v € I'(S) is assigned 0 by =z,
contradicting the linear constraint.

We assume in our algorithm that f(-) can be queried for a specific set S in
polynomial time. For the analysis, we assume that each node v with f({v}) =1
has zero cost. For the Steiner forest problem, for example, each such node belongs
to some pair, so must belong to the solution, so we can make this assumption
without loss of generality.

For a subset X of nodes in a graph G, let CC(X) denote the node sets of
connected components of the subgraph of G induced by X.

Lemma 1. Let X be a subset of nodes of G that contains every node v such that
f({v}) = 1. Suppose that f(C) =0 for every C € CC(X). Then X is a feasible
solution to the integer program.

Proof. Let x be the function that assigns 1 to nodes in X and 0 to nodes not
in X. Let S be any subset of nodes such that }_ ¢ g z(v) = 0. We shall show
that f(S) =0.

For each C' € CC(X), we claim that SNC is either § or C. (Otherwise, there
would be a pair u,v of adjacent nodes in X such that v € S and v € S, so
v € I'(S). Since x(v) = 1, this would contradict the choice of S.)

The claim implies that S is the disjoint union of some of the connected
components C' € CC(X) together with some singletons {v} with v ¢ X. We
assumed that X contains all nodes v with f({v}) = 1, so f({v}) = 0 for v ¢
X. We also assumed that each connected component C' of X has f(C) = 0.
Combining these facts using the disjointness property of f, we infer that f(S) =
0.

O |

Dual. The linear relaxation of the above integer program is obtained by re-
placing the constraint xz(v) € {0,1} with the constraint xz(v) > 0. The dual of
the resulting linear program is as follows:

maximize Y gy f(S) y(S5)
subject t0 Y gcvper(s) ¥(S) S w(v) for all v €V,
y(S) >0 forall SC V.

There is a dual variable y(S) for each subset S of V. However, the only such
variables that affect the objective function (and therefore the only variables we
need to consider) are those variables y(S) where f(S) = 1. Intuitively, the goal
of the dual linear program is to find a maximum-size family of node sets S with
f(S) = 1 subject to the constraint that each node v is the neighbor of at most
w(v) sets in the family.

Primal-Dual Algorithm. Goemans and Williamson [I3] gave a generic ver-
sion of the primal-dual approximation algorithm. In this section, we give an
algorithm that is a specialization (and slight modification) of their generic algo-
rithm. We start with some terminology.

Let G be the input graph. A node set S is a wviolated connected component
with respect to X if S € CC(X) and f(S) = 1. Define a partial solution to be
a set X of nodes containing {v : f(v) = 1} such that there is some violated
connected component with respect to X.

Goemans and Williamson’s generic algorithm is defined in terms of an oracle.
We will use an oracle Viol(-) that takes a partial solution X as input, and that
outputs the violated connected components with respect to X. This oracle can
be implemented in polynomial time using a connected-components subroutine
and queries to the function f(-).

Now we give our specialization and modification of the generic algorithm.
The modification is as follows. Their algorithm maintains a solution X, initially
empty, and adds to it in a series of iterations; finally, the algorithm removes
some elements from it. In our modified version, X initially consists of all nodes
v such that f({v}) =1, and these elements are never removed from X. However,
these nodes are required to have weight zero, so their presence in X does not
affect the approximation performance.

The algorithm also maintains a dual feasible solution y. Recall that the dual
linear program has a constraint > gcy.,epg) ¥(S) < w(v) for each node v € V.

l.y<20
2 X —f{v i f({v}) =1}
3. While there is a violated connected component with respect to X:
(a) Increase y(S) uniformly for all sets S € Viol(X) until the
dual linear-program inequality for some v becomes tight:
ngvzveF(S) y(S) = w(v).
(b) Add v to X, i.e., z(v) « 1.
4. For each v in X in the reverse of the order in which they were added
during the while-loop:
(a) If f(S) = 0 for every connected component S € CC(X — {v}),
then remove v from X.
5. Return X.

The algorithm above is almost an instantiation of an algorithm of Goemans
and Williamson [I3]. The difference is that, in our algorithm, X is required at
all times to contain every node v such that f({v}) = 1. Because these nodes are
assumed to have zero cost, the proof of Theorem 4.2 of [I3] can be adapted to
show the theorem below (see the full paper). For a set X of nodes of G, a set F'
of nodes is a feasible augmentation of X if I O X and F is a feasible solution.
If in addition no proper subset of F' is a feasible augmentation of X then F'is a
minimal feasible augmentation of X.

Theorem 7. Suppose v is a number such that, for any partial solution X CV
and any minimal feasible augmentation F of X, we have

S{IFNT(S)] : S € Viol(X)} < |Viol(X)). 2)

Then the algorithm described above returns a feasible solution of weight at most
> scv Y(S) < v LP-OPT where LP-OPT denotes the weight of an optimal
solution to the linear program .

In order to apply Theorem |7} we need to prove for some ~.

Theorem 8. Let X be a partial solution, and let F' be any minimal feasible
augmentation of X.

If G is planar, then > {|FNI(S)| : S € Viol(X)} <6|Viol(X)].

If G is H-minor-free, then > {|F N I'(S)] : S € Viol(X)} <
O(|V (H)|/1og [V (H)]) [Viol(X)].

The proof of Theorem [8| will be given in this section. By using the bounds
proved in Theorem [§in Theorem [7] we obtain

Theorem 9. The primal-dual algorithm above is a 6-approximation on planar
graphs and, more generally, an O(1)-approzimation in H-minor-free graphs for
any fixed graph H.

Now we give the proof of Theorem
The sum Y {|FNI(S) : S € Viol(X)} counts the number of adjacencies
between F' and violated connected components of X, counting multiply if one

violated connected component of X is adjacent to several nodes in F', but count-
ing only once if multiple nodes in a common violated connected component of
X are adjacent to one node of F.

Let F = F — X. For any S € Viol(X), since S is the node set of a connected
component of G[X], no neighbor of S belongs to X. This shows that |FNI(S)| =
|F' N I(S)|. To prove Theorem [8] it therefore suffices to bound

S{IFNT(S)| : S e Viol(X)}. (3)

Let G be the graph obtained from G by contracting each violated connected
component of X to a single node, which we call a terminal. Let R be the set
of terminals. Because of the contractions, no two nodes of R _are adjacent in
G. We discard multiple copies of edges in G so that the sum in G becomes
the number of edges in G between nodes in F and terminals. Our goal is to
bound the number of such edges in terms of |R|. We do this separately for each
connected component of G[F' U R]. Let G’ = G[F' U R'] be one such connected
component, where F/ C F' and R C R.

By minimality of F', R’ is nonempty. Assign distinct integers as IDs to the
nodes of G’. Let r be a node in R'. For each node v in F'UR/, define its level £(v)
to be its breadth-first-search distance from 7 in G’. We next define the parent
p(v) of each node v # r. For v € R’ — {r}, define p(v) to be a neighbor of v in G’
having level £(v) — 1, namely that neighbor having minimum ID. For each node
v € F', select p(v) as follows. If v has a neighbor w in R’ such that p(w) # v,
then p(v) is any such neighbor. Suppose that v has no neighbor w in R’ such
that p(w) # v. By the properties of breadth-first-search distances, v has some
neighbor w’ such that ¢(w’) = £(v) — 1. Let p(v) be this node w’. We show that
in this case that w’ € F”.

Assume for a contradiction that w’ € R'. Its parent would have level £(w’) —
1 =4(v) — 2, so its parent could not be v. This implies that v has a neighbor in
R’ whose parent is not v, a contradiction.

Lemma 2. The parent pointers do not form a cycle.

Proof. Suppose for contradiction that C' = zgzi2zs...xr_12¢0 Were a minimal
(simple) cycle with p(z;) = x;4+1 for all i (where the indices are taken modulo k).
The root r cannot be in the cycle C because it has no parent. Because x;z;1 is
an edge of the graph, ¢(x;4+1) < #(x;) + 1 for every i. By construction, ¢(z;4+1) =
£(z;) —1 for each i where z; € R’ and for each ¢ where z; € F/ and ;41 € F’, So
the only case in which ¢(z;41) could be ¢(x;) + 1 is when z; € F' and ;41 € R'.
But then by construction #(x;y2) = ¢(z;+1) — 1 = ¢(x;). Thus every increase in
level is immediately followed in the cycle C' by a strict decrease in level.
Suppose there were two consecutive strict decreases: ¢(x;y1) = ¢(x;) — 1 and
(zi12) = £(x;y+1)—1. Then all nodes after x;1o would have level at most ¢(z;)—1,
contradicting the fact that C' is a cycle. It follows that the z;’s must alternate
between R’ and F’, and that, for some positive integer d, the levels of the nodes
in C N R’ are d, and the levels of the nodes in C N F’ are d — 1. Now consider
the minimum-ID node x; in C'N F’. By construction, x;_; and x;y; must have

x; as their parent. But this contradicts p(x;y+1) = x;12 given that the cycle is
simple. O

Lemma [2] shows that the parent pointers define a rooted spanning tree of
G[F' U R']. Let F” be the subset of nodes in F’ with a neighbor in R’. We need
to compute the number of edges in G[F” U R/].

Lemma 3. ‘F”l S 2 |R/| terminals — > J

Proof. As we show in Figure [I] to each node u
of R/, we charge at most two nodes of F": u’s
parent and the nearest ancestor of u whose parent

is in R’. We claim that every node of F" gets d‘
counted by this charging. < charged to u
By minimality of F', every node of F’ is on a J
> u

path in the tree T from some terminal in R’ to
the root r. Let v be any node of F”. Let P be
the shortest terminal-to-terminal path in T that
includes v. Since v € F”, v has a neighbor w in
R. If v is the second node of P then v is charged
to the first node of P. Otherwise, by minimality of P, v is not the parent of a
terminal, so p(w) # v, so v’s parent is a terminal (not necessarily w), so again v
is charged to the first node of P. o

Fig.1. Charging nodes of
F” to terminals.

Now we can complete the proof of Theorem [Bl Since G is H-minor free, and
G[F” U R is a minor of G, G[F" U R] is also H-minor free Hence the number
of edges in G[F' U R] is O((|F’\ + |R|) |[V(H)|\/log |V(H)|) [21I29], which is

(|R| |V (H)|\/log |V(H)|) as desired. If G is planar then the number of edges
in G[F" UR'] is at most 2 (|F"| + |R'|) < 6|R'| because G[F” U R] is a simple
planar bipartite graph [30].

Corollary 1. Node-weighted Steiner tree, Steiner forest, T-join, point-to-point
communication, exact tree/cycle/path partitioning problems, lower capacitated
partitioning, and location-design and location-routing problems [12] have
polynomial-time O(1)-approzimation algorithms for any family of graphs exclud-
ing a fized minor.

References

1. I. Abraham, Y. Bartal, and O. Neiman. Nearly tight low stretch spanning trees. In
Proceedings of the 49th Annual Symposium on Foundations of Computer Science,
pages 781-790, 2008.

2. A. Agrawal, P. Klein, and R. Ravi. When trees collide: an approximation algorithm
for the generalized Steiner problem on networks. In STOC, pages 134-144, 1991.

3. M. Andrews. Hardness of buy-at-bulk network design. In Proceedings of the 45th
Symposium on Foundations of Computer Science, pages 115-124, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Rough-
garden. The price of stability for network design with fair cost allocation. In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, pages 295-304, 2004.

E. M. Arkin and R. Hassin. Approximation algorithms for the geometric covering
salesman problem. Discrete Applied Mathematics, 55(3):197-218, 1994.

Y. Bartal. On approximating arbitrary metrices by tree metrics. In Proceedings of
the 30th Annual ACM Symposium on Theory of Computing, pages 161-168, 1998.
D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson. A note on
the prize collecting traveling salesman problem. Math. Programming, 59(3, Ser.
A):413-420, 1993.

C. Chekuri, S. Khanna, and F. B. Shepherd. Multicommodity flow, well-linked ter-
minals, and routing problems. In Proceedings of the 87th Annual ACM Symposium
on Theory of Computing, pages 183-192, 2005.

U. Feige. A threshold of Inn for approximating set cover. Journal of the ACM,
45(4):634-652, 1998.

U. Feige, M. Hajiaghayi, and J. R. Lee. Improved approximation algorithms for
minimum-weight vertex separators. In Proceedings of the 87th Annual ACM Sym-
posium on Theory of Computing, pages 563—-572, 2005.

N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm
for the group steiner tree problem. Journal of Algorithms, 37(1):66-84, 2000.

M. X. Goemans and D. P. Williamson. A general approximation technique for
constrained forest problems. SIAM J. Comput., 24(2):296-317, 1995.

M. X. Goemans and D. P. Williamson. The primal-dual method for approximation
algorithms and its application to network design problems. In D. S. Hochbaum,
editor, Approximation Algorithms for NP-hard Problems, chapter 4, pages 144-191.
PWS, Boston, 1997.

J. Gudmundsson and C. Levcopoulos. A fast approximation algorithm for TSP
with neighborhoods. Nordic Journal of Computing, 6(4):469-488, Winter 1999.

S. Guha, A. Moss, J. Naor, and B. Schieber. Efficient recovery from power outage.
In STOC, pages 574-582, 1999.

M. T. Hajiaghayi and K. Jain. The prize-collecting generalized steiner tree problem
via a new approach of primal-dual schema. In Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithm, pages 631-640, 2006.

M. T. Hajiaghayi, R. D. Kleinberg, T. Leighton, and H. Raecke. Oblivious routing
on node-capacitated and directed graphs. In Proceedings of the 16th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 782—790, Philadelphia, PA, USA,
2005.

E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In Pro-
ceedings of the the 85th Annual ACM Symposium on Theory of Computing, pages
585-594, 2003.

R. M. Karp. Reducibility among combinatorial problems. In Complexity of Com-
puter Computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, York-
town Heights, N.Y., 1972), pages 85-103. Plenum, New York, 1972.

P. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-
weighted Steiner trees. Journal of Algorithms, 19(1):104-115, July 1995.

A. V. Kostochka. Lower bound of the Hadwiger number of graphs by their average
degree. Combinatorica, 4(4):307-316, 1984.

M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B.
Hunt, II1. Bicriteria network design problems. J. Algorithms, 28(1):142-171, 1998.

23. C. S. Mata and J. S. B. Mitchell. Approximation algorithms for geometric tour and
network design problems (extended abstract). In Proceedings of the 11th Annual
Symposium on Computational Geometry, pages 360—-369, Vancouver, Canada, 1995.

24. J. S. B. Mitchell. A PTAS for TSP with neighborhoods among fat regions in
the plane. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 11-18, 2007.

25. A. Moss and Y. Rabani. Approximation algorithms for constrained node weighted
steiner tree problems. SIAM Journal on Computing, 37(2):460-481, 2007.

26. R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proceedings of the 29th
Annual ACM Symposium on Theory of Computing, pages 475-484, 1997.

27. G. Reich and P. Widmayer. Beyond steiner’s problem: a VLSI oriented general-
ization. In Proceedings of the 15th International Workshop on Graph-Theoretic
Concepts in Computer Science, pages 196210, 1990.

28. S. Safra and O. Schwartz. On the complexity of approximating TSP with neigh-
borhoods and related problems. Computational Complexity, 14(4):281-307, 2006.

29. A. Thomason. The extremal function for complete minors. Journal of Combina-
torial Theory, Series B, 81(2):318-338, 2001.

30. D. B. West. Introduction to Graph Theory. Prentice Hall Inc., Upper Saddle River,
NJ, 1996.

A Noncrossing-Flow Directed Steiner Tree
Our relaxation is related to a standard linear-program relaxation of directed Steiner

tree, one based on min-cost flows. For each terminal ¢ € T and each arc e, there is a
variable fi(e). For each arc e, there is a variable ¢(e). The linear program is as follows:

minimize Z c(e) max fi(e)

ecE
lifv=t (4)
subject to Z fe(vw) — Z fi(ww)=< —lifv=s forallteT,veV
wivweE uuveE 0 otherwise
fe(e) >0 forallt € Te € E,

(The inner max in the objective function can be removed using auxiliary variables, one
for each arc.) We denote an assignment to all the variables f:(e) by f, and we denote
by ¢(f) the corresponding value of the objective function.

Consider the case where G is a planar embedded graph. We say that two paths P
and @ in G cross if P enters @ on the left, shares zero or more edges with @), and then
exits @ on the right, or vice versa. For a terminal ¢, a flow path for t is a path consisting
of arcs e such that f;(e) > 0. We say that an assignment to the variables f;(e) of the
linear program is noncrossing if, for every pair ¢,t’ of distinct terminals, every flow
path p for ¢, and every flow path ¢ for ', p and ¢ do not cross. The noncrossing-flow
formulation of directed Steiner tree refers to the linear program augmented with the
(nonlinear) constraint that the flow assignment is noncrossing.

Any minimal solution to directed Steiner tree is a directed tree, so flow paths in the
solution do not cross. It follows that the noncrossing-flow formulation is a relaxation for
directed Steiner tree in a planar graph. In particular, the optimum of that noncrossing-
flow formulation is a lower bound on the minimum cost of a directed Steiner problem.
Theorem [f] provides a converse.

	Node-Weighted Steiner Tree and Group Steiner Tree in Planar Graphs
	Erik D. Demaine 1, and MohammadTaghi Hajiaghayi 1, and Philip N. Klein

