555 research outputs found

    Highly efficient multilayer organic pure-blue-light emitting diodes with substituted carbazoles compounds in the emitting layer

    Get PDF
    Bright blue organic light-emitting diodes (OLEDs) based on 1,4,5,8,N-pentamethylcarbazole (PMC) and on dimer of N-ethylcarbazole (N,N'-diethyl-3,3'-bicarbazyl) (DEC) as emitting layers or as dopants in a 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl (DPVBi) matrix are described. Pure blue-light with the C.I.E. coordinates x = 0.153 y = 0.100, electroluminescence efficiency \eta_{EL} of 0.4 cd/A, external quantum efficiency \eta_{ext.} of 0.6% and luminance L of 236 cd/m2 (at 60 mA/cm2) were obtained with PMC as an emitter and the 2,9-dimethyl-4,7-diphenyl-1,10-phenantroline (BCP) as a hole-blocking material in five-layer emitting devices. The highest efficiencies \eta_{EL.} of 4.7 cd/A, and \eta_{ext} = 3.3% were obtained with a four-layer structure and a DPVBi DEC-doped active layer (CIE coordinates x = 0.158, y=0.169, \lambda_{peak} = 456 nm). The \eta_{ext.} value is one the highest reported at this wavelength for blue OLEDs and is related to an internal quantum efficiency up to 20%

    Status of the Micromegas semi-DHCAL

    Full text link
    The activities towards the fabrication and test of a 1 m3 semi-digital hadronic calorime- ter are reviewed. The prototype sampling planes would consist of 1 m2 Micromegas chambers with 1 cm2 granularity and embedded 2 bits readout suitable for PFA calorime- try at an ILC detector. The design of the 1 m2 chamber is presented first, followed by an overview of the basic performance of small prototypes. The basic units composing the 1 m2 chamber are 32 \times 48 cm2 boards with integrated electronics and a micro-mesh. Results of character- ization tests of such boards are shown. Micromegas as a proportional detector is well suited for semi-digital hadronic calorimetry. In order to quantify the gain in perfor- mance when using one or more thresholds, simulation studies are being carried out, some of which will be reported in this contribution

    Active stabilization studies at the sub-nanometer level for future linear colliders

    Get PDF
    The next collider which will be able to contribute significantly to the comprehension of matter is a high energy linear collider. The luminosity of this collider will have to be of 1035cm-2s-1, which imposes a vertical beam size of 0,7nm. The relative motion between the last two focusing magnets should not exceed a third of the beam size above 4Hz. Ground motion and acoustic noise can induce vibrations that have to be compensated with active stabilisation. In this paper, we describe the three aspects needed for such a development. We have assessed sensors capable of measuring sub-nanometre displacements, performed numerical calculations using finite element models to get the dynamic response of the structure, and developed a feedback loop for the active stabilisation. Combining the expertise into a mecatronics project made it possible to obtain a displacement RMS at 5Hz of 0.13nm at the free end of our prototype

    Test in a beam of large-area Micromegas chambers for sampling calorimetry

    Full text link
    Application of Micromegas for sampling calorimetry puts specific constraints on the design and performance of this gaseous detector. In particular, uniform and linear response, low noise and stability against high ionisation density deposits are prerequisites to achieving good energy resolution. A Micromegas-based hadronic calorimeter was proposed for an application at a future linear collider experiment and three technologically advanced prototypes of 1×\times1 m2^{2} were constructed. Their merits relative to the above-mentioned criteria are discussed on the basis of measurements performed at the CERN SPS test-beam facility

    Vibration stabilization for a cantilever magnet prototype at the subnanometer scale

    Get PDF
    In the future linear colliders, the size of the beams is in the nanometer range, which requires stabilization of the final magnets before the interaction point. In order to guarantee the desired luminosity, an absolute displacement lower than 1/3 of the beam size, above a few hertz, has to be obtained. This paper describes an adapted instrumentation, the developed feedback loops dedicated to the active compensation and an adapted modelling able to simulate the behaviour of the structure. The obtained results at the subnanometer scale at the free end of a cantilever magnet prototype with a combination of the developed active compensation method and a commercial active isolation system are described

    Linear Collider Final Doublet Considerations: ATF2 Vibration Measurements

    Get PDF
    Original publication available at http://www.jacow.org/International audienceAt ATF2, to allow the Shintake Monitor located at the Interaction Point to measure the beam size with only 2% of error, vertical relative motion tolerance between SM (Shintake Monitor) and final doublet magnets (FD) is of 7nm for QD0 and 20nm for QF1 above 0.1Hz. Vibration transfer function of FD and SM with their supports has been measured and show a good rigidity. Vertical relative motion between the SM and QD0 (QF1) was thus measured to be only of 5.1nm (6.5nm) with high ground motion representative of a shift period. Same measurements done in horizontal directions showed that tolerances were also respected (much less strict). Moreover, relative motion tolerances should be released due to the good motion correlation measured between FD. Thus the FD and SM supports have been validated on site at ATF2 to be within the vibration specifications
    corecore