research

Vibration stabilization for a cantilever magnet prototype at the subnanometer scale

Abstract

In the future linear colliders, the size of the beams is in the nanometer range, which requires stabilization of the final magnets before the interaction point. In order to guarantee the desired luminosity, an absolute displacement lower than 1/3 of the beam size, above a few hertz, has to be obtained. This paper describes an adapted instrumentation, the developed feedback loops dedicated to the active compensation and an adapted modelling able to simulate the behaviour of the structure. The obtained results at the subnanometer scale at the free end of a cantilever magnet prototype with a combination of the developed active compensation method and a commercial active isolation system are described

    Similar works