30 research outputs found
Growth Response and Differentiation of Bone Marrow-Derived Mesenchymal Stem/Stromal Cells in the Presence of Novel Multiple Myeloma Drug Melflufen
Mesenchymal stem/stromal cells (MSCs) are self-renewing and multipotent progenitors, which constitute the main cellular compartment of the bone marrow stroma. Because MSCs have an important role in the pathogenesis of multiple myeloma, it is essential to know if novel drugs target MSCs. Melflufen is a novel anticancer peptide–drug conjugate compound for patients with relapsed refractory multiple myeloma. Here, we studied the cytotoxicity of melflufen, melphalan and doxorubicin in healthy human bone marrow-derived MSCs (BMSCs) and how these drugs affect BMSC proliferation. We established co-cultures of BMSCs with MM.1S myeloma cells to see if BMSCs increase or decrease the cytotoxicity of melflufen, melphalan, bortezomib and doxorubicin. We evaluated how the drugs affect BMSC differentiation into adipocytes and osteoblasts and the BMSC-supported formation of vascular networks. Our results showed that BMSCs were more sensitive to melflufen than to melphalan. The cytotoxicity of melflufen in myeloma cells was not affected by the co-culture with BMSCs, as was the case for melphalan, bortezomib and doxorubicin. Adipogenesis, osteogenesis and BMSC-mediated angiogenesis were all affected by melflufen. Melphalan and doxorubicin affected BMSC differentiation in similar ways. The effects on adipogenesis and osteogenesis were not solely because of effects on proliferation, seen from the differential expression of differentiation markers normalized by cell number. Overall, our results indicate that melflufen has a significant impact on BMSCs, which could possibly affect therapy outcome
Growth Response and Differentiation of Bone Marrow-Derived Mesenchymal Stem/Stromal Cells in the Presence of Novel Multiple Myeloma Drug Melflufen
Mesenchymal stem/stromal cells (MSCs) are self-renewing and multipotent progenitors, which constitute the main cellular compartment of the bone marrow stroma. Because MSCs have an important role in the pathogenesis of multiple myeloma, it is essential to know if novel drugs target MSCs. Melflufen is a novel anticancer peptide-drug conjugate compound for patients with relapsed refractory multiple myeloma. Here, we studied the cytotoxicity of melflufen, melphalan and doxorubicin in healthy human bone marrow-derived MSCs (BMSCs) and how these drugs affect BMSC proliferation. We established co-cultures of BMSCs with MM.1S myeloma cells to see if BMSCs increase or decrease the cytotoxicity of melflufen, melphalan, bortezomib and doxorubicin. We evaluated how the drugs affect BMSC differentiation into adipocytes and osteoblasts and the BMSC-supported formation of vascular networks. Our results showed that BMSCs were more sensitive to melflufen than to melphalan. The cytotoxicity of melflufen in myeloma cells was not affected by the co-culture with BMSCs, as was the case for melphalan, bortezomib and doxorubicin. Adipogenesis, osteogenesis and BMSC-mediated angiogenesis were all affected by melflufen. Melphalan and doxorubicin affected BMSC differentiation in similar ways. The effects on adipogenesis and osteogenesis were not solely because of effects on proliferation, seen from the differential expression of differentiation markers normalized by cell number. Overall, our results indicate that melflufen has a significant impact on BMSCs, which could possibly affect therapy outcome.Peer reviewe
Growth Response and Differentiation of Bone Marrow-Derived Mesenchymal Stem/Stromal Cells in the Presence of Novel Multiple Myeloma Drug Melflufen
Mesenchymal stem/stromal cells (MSCs) are self-renewing and multipotent progenitors, which constitute the main cellular compartment of the bone marrow stroma. Because MSCs have an important role in the pathogenesis of multiple myeloma, it is essential to know if novel drugs target MSCs. Melflufen is a novel anticancer peptide–drug conjugate compound for patients with relapsed refractory multiple myeloma. Here, we studied the cytotoxicity of melflufen, melphalan and doxorubicin in healthy human bone marrow-derived MSCs (BMSCs) and how these drugs affect BMSC proliferation. We established co-cultures of BMSCs with MM.1S myeloma cells to see if BMSCs increase or decrease the cytotoxicity of melflufen, melphalan, bortezomib and doxorubicin. We evaluated how the drugs affect BMSC differentiation into adipocytes and osteoblasts and the BMSC-supported formation of vascular networks. Our results showed that BMSCs were more sensitive to melflufen than to melphalan. The cytotoxicity of melflufen in myeloma cells was not affected by the co-culture with BMSCs, as was the case for melphalan, bortezomib and doxorubicin. Adipogenesis, osteogenesis and BMSC-mediated angiogenesis were all affected by melflufen. Melphalan and doxorubicin affected BMSC differentiation in similar ways. The effects on adipogenesis and osteogenesis were not solely because of effects on proliferation, seen from the differential expression of differentiation markers normalized by cell number. Overall, our results indicate that melflufen has a significant impact on BMSCs, which could possibly affect therapy outcome
Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy
The European Academy of Wind Energy (eawe), representing universities and institutes with a significant wind energy programme in 14 countries, has discussed the long-term research challenges in wind energy. In contrast to research agendas addressing short- to medium-term research activities, this eawe document takes a longer-term perspective, addressing the scientific knowledge base that is required to develop wind energy beyond the applications of today and tomorrow. In other words, this long-term research agenda is driven by problems and curiosity, addressing basic research and fundamental knowledge in 11 research areas, ranging from physics and design to environmental and societal aspects. Because of the very nature of this initiative, this document does not intend to be permanent or complete. It shows the vision of the experts of the eawe, but other views may be possible. We sincerely hope that it will spur an even more intensive discussion worldwide within the wind energy community
Future Perspectives of Bone Tissue Engineering with Special Emphasis on Extracellular Vesicles
Peer reviewe
Differentiation of adipose stem cells seeded towards annulus fibrosus cells on a designed poly(trimethylene carbonate) scaffold prepared by stereolithography
Cell-based therapies could potentially restore the biomechanical function and enhance the self-repair capacity of annulus fibrosus (AF) tissue. However, choosing a suitable cell source and scaffold design are still key challenges. In this study, we assessed the in vitro ability of human adipose stem cells (hASCs), an easily available cell source to produce AF-like matrix in novel AF-mimetic designed scaffolds based on poly(trimethylene carbonate) and built by stereolithography. To facilitate efficient differentiation of hASCs towards AF tissue, we tested different culture medium compositions and cell seeding techniques. This is the first study to report that medium supplementation with transforming growth factor (TGF)-β3 is essential to support AF differentiation of hASCs while TGF-β1 has negligible effect after 21 days of culture. Fibrin gel seeding resulted in superior cell distribution, proliferation and AF-like matrix production of hASCs compared to direct and micromass seeding under TGF-β3 stimulation. Not only the production of sulphated glycosaminoglycans (sGAG) and collagen was significantly upregulated, but the formed collagen was also oriented and aligned into bundles within the designed pore channels. The differentiated hASCs seeded with fibrin gel were also found to have a comparable sGAG:collagen ratio and gene expression profile as native AF cells demonstrating the high potential of this strategy in AF repai
Differentiation of adipose stem cells seeded towards annulus fibrosus cells on a designed poly(trimethylene carbonate) scaffold prepared by stereolithography
Cell-based therapies could potentially restore the biomechanical function and enhance the self-repair capacity of annulus fibrosus (AF) tissue. However, choosing a suitable cell source and scaffold design are still key challenges. In this study, we assessed the in vitro ability of human adipose stem cells (hASCs), an easily available cell source to produce AF-like matrix in novel AF-mimetic designed scaffolds based on poly(trimethylene carbonate) and built by stereolithography. To facilitate efficient differentiation of hASCs towards AF tissue, we tested different culture medium compositions and cell seeding techniques. This is the first study to report that medium supplementation with transforming growth factor (TGF)-beta 3 is essential to support AF differentiation of hASCs while TGF-beta 1 has negligible effect after 21 days of culture. Fibrin gel seeding resulted in superior cell distribution, proliferation and AF-like matrix production of hASCs compared to direct and micromass seeding under TGF-beta 3 stimulation. Not only the production of sulphated glycosaminoglycans (sGAG) and collagen was significantly upregulated, but the formed collagen was also oriented and aligned into bundles within the designed pore channels. The differentiated hASCs seeded with fibrin gel were also found to have a comparable sGAG: collagen ratio and gene expression profile as native AF cells demonstrating the high potential of this strategy in AF repair