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1. Introduction 
The annulus fibrosus (AF) is a multi-lamellar fibrocartilaginous tissue which forms the outer 

layer of the intervertebral disc (IVD) and is subjected to high risk of degeneration due to its 

avascularity and low cellularity (Bibby et al. 2001). Degeneration of the IVD leads to 

tearing of the AF (Coppes et al. 1990). Already even minor injuries to the AF can lead to 

permanent disc damage (Fazzalari et al. 2001). The conventional treatments by drug 

administration (Blanquer et al. 2015) and/or the established surgical methods have shown 

serious drawbacks and limited success (Bao et al. 1996, Disch et al. 2008). Therefore, new 

effective treatments are urgently needed. Tissue engineering of AF is a promising approach 

allowing immediate closure of the defect, restoring the biomechanical properties of the disc 

and simultaneously encouraging the repair of the ruptured tissue.  

Several scaffold processing techniques with different types of biodegradable biomaterials 

have been suggested for AF tissue engineering (Guterl et al. 2013). Unfortunately, none of 

the current strategies have been able to reach the biomechanical properties of the native AF 

tissue and restore its function. A major challenge has been the reproduction of the complex 

multi-lamellar structure and the biomechanical cues of the native tissue (Figure 1 A and 1B) 

(Ebara et al. 1996, Nerurkar et al. 2010), which are prerequisites for efficient cell 

differentiation and extracellular matrix (ECM) organization (Guterl et al. 2013). Therefore, 

a scaffold for AF regeneration must preferably induce the specific orientation and direction 

of the collagen bundles. An accurately-controlled 3D scaffold preparation method that is 

able to reproduce the complex organization and orientation of the pore characteristics of the 

damaged tissue, has not yet been reported. Stereolithography could be used to create these 

complex designs as it is known to be a most versatile 3D structure processing method, with 

the highest accuracy and precision (Melchels et al. 2010, Skoog et al. 2014) of the additive 

manufacturing techniques.  

In addition to the scaffold design and preparation challenge, a suitable cell source and 

efficient differentiation method need to be available for a successful cell therapy leading to 

functional AF matrix synthesis and disc regeneration. Although autologous AF cell 

transplantation therapies have encountered some success in animal models (Kuh et al. 

2009), an alternative for clinical therapy is ineluctably required due to the limited 

availability and expansion capacity of autologous AF cells (Bron et al. 2009). Bone marrow-
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derived mesenchymal stem cells (BMSCs) have been used for AF tissue engineering 

applications (Richardson et al. 2010, Orozco et al. 2011). However, the use of these cells is 

also limited by the quantity that can be collected from the patient, and by the associated 

donor-site morbidity. The use of multipotent human adipose stem cells (hASCs) 

differentiated towards an AF phenotype could evade these problems as adipose tissue is an 

abundant and easily accessible cell source (Lindroos et al. 2011). Interestingly, recent 

studies have shown that isoforms of TGF-β can stimulate the differentiation of animal and 

human derived ASCs towards an AF phenotype (Tapp et al. 2008, Gruber et al. 2010). 

However, a systematic comparison between the key isoforms of TGF-β, type 1 and 3, and 

their use in combination to efficiently differentiate hASCs towards an AF phenotype is 

lacking. 

In this work we aim to establish an effective method to engineer AF tissue using novel AF-

mimetic designed scaffolds seeded with hASCs and differentiated in vitro under optimized 

culture conditions. This is the first study describing the preparation of a tissue engineering 

scaffold with a pore architecture representing the orientation of the collagen bundles of the 

AF tissue. Because both mechanical properties and the architecture of the scaffold play an 

important role in the biological response, we propose to use resins based on 

poly(trimethylene carbonate) (PTMC). This polymer is known for its biocompatibility and 

biodegradability (Zhang et al. 2006, Vyner et al. 2014) but also for its rubber-like properties 

(Schuller-Ravoo et al. 2013). To allow effective hASC differentiation towards AF tissue, a 

new hASC differentiation strategy was established, based on optimization of seeding 

method and TGF-β1 and -3 isoform supplementation.  

 

2. Materials and methods 
2.1 Scaffold fabrication and characterization 

The scaffolds were designed using 3D software (Rhinoceros 3D, McNeel Europe and 

K3dSurf v0.6.2).  

The synthesis of PTMC oligomers (Mn = 5000 g/mol) was carried out by ring-opening 

polymerization of 0.98 mol (100 g) trimethylene carbonate (1,3-dioxan-2-one; TMC, 

Foryou Medical, Huizhou City, China), initiated by 0.0196 mol (2.62 g) 

tri(hydroxymethyl)propane (TMP, Sigma-Aldrich, Munich, Germany) and catalyzed by 
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0.05 wt% stannous octoate (tin 2-ethylhexanoate, SnOct2, Sigma-Aldrich) at a temperature 

around 130°C for 3 days under argon atmosphere. Subsequently, the oligomer was end-

functionalized with methacrylate groups using 0.18 mol (27 mL) of methacrylic anhydride 

in the presence of 0.18 mol (25 mL) of triethylamine in solution in dichloromethane (100 

mL) (Sigma-Aldrich) at room temperature under argon atmosphere for 5 days. 

Proton nuclear magnetic resonance (1H-NMR, 300 MHz) was used to determine the 

conversion rate and the number average molecular weight (Mn) of the macromer. The resin 

for stereolithography was prepared by dilution of the PTMC macromer in propylene 

carbonate (Sigma-Aldrich) to reach a viscosity of approximately 5-10 Pa.s. The resin further 

contained Lucirin TPO-L (5 wt% relative to the macromer) (BASF, Germany) as a photo-

initiator and Orasol Orange dye (0.15 wt% relative to the macromer) (Ciba Speciality 

Chemicals, Switzerland) to control the penetration depth of the UV light. The scaffolds were 

built using a UV stereolithograph (EnvisionTech Perfactory, Germany) at a pixel resolution 

16x16 µm2 and a layer thickness of 100 µm per layer. To reach this resolution with this resin 

composition, the illumination time per layer was 20 seconds with a light intensity of 180 

mW/cm2. After extraction twice for 6 hours in acetone (Sigma-Aldrich), the scaffolds were 

washed with 70% ethanol (Sigma-Aldrich) for 6 more hours and dried until a constant 

weight was reached. 

The mechanical properties of the scaffolds were measured by compression testing in the dry 

state using a material testing machine (Zwick Z020, Germany), equipped with a 500N load 

cell at a compression rate of 30% per minute to a maximum of 80% strain.  

Scanning electron microscopy (SEM) (Philips XL30 ESEM-FEG, The Netherlands) was 

applied to visualize the porous structures. The specimens were sputter-coated with gold, and 

the apparatus was operated at a voltage of 3 kV. 

 

2.2 Adipose stem cell isolation and characterization 

Human ASCs were isolated from 6 female donors (age 52±9) and expanded in maintenance 

medium (MM; Table 1) at 37°C and 5% carbon dioxide (CO2) as previously described 

(Kyllonen et al. 2013). The study was carried out under approval of the ethical committee 

of Pirkanmaa Hospital District and with informed consent from the donors.  

After expansion, hASCs were characterized by flow cytometry (FACSAria; BD 

Biosciences, Belgium) to confirm the mesenchymal origin of the cells. Monoclonal 
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antibodies against CD14-PE-Cy7, CD19-PE-Cy7, CD45RO-APC, CD73-PE and CD90-

APC (BD Biosciences); HLA-DR-PE (Immunotools GmbH, Germany) and CD11a-APC, 

CD80-PE, CD86–PE, and CD105-PE (R&D Systems Inc, USA) were used. Analysis was 

performed on 10,000 cells per samples and positive expression was defined as the level of 

fluorescence greater than 99% of the corresponding unstained cell sample. 

 

2.3 Differentiation medium component optimization in micromass cultures  

To optimize the AF differentiation medium for hASCs, a preliminary screening of the 

potential growth factors was done in a micromass culture. For this, hASCs at passages 3-4, 

were plated according to the micromass culture technique described earlier (Tapp et al. 

2008) in order to stimulate AF differentiation. A high cell density suspension (107 cells/ml) 

was added as 3 droplets of 10 µl to the centre of wells in 24-well plates (Nunc). Cultures 

were incubated for 3 h before addition of 700 µl control chondrogenic medium (CM), or 

differentiation media consisting of CM supplemented with either 10 ng/ml TGF-β1 (DM1), 

10 ng/ml TGF-β3 (DM3) or both 10 ng/ml TGF-β1 and 10 ng/ml TGF-β3 (DM1+3) (Table 

1). A concentration of 10 ng/ml was used as this concentration for both TGF-β1 and TGF-

β3 has been shown previously to be effective for hASCs (Gruber et al. 2010). Experiments 

were repeated 3 times with different donors. Technical duplicates of each sample were used 

in all assays. After 14 and 21 days of culture, the micromasses were collected for 

biochemical, histological and PCR analysis. DM3 was selected as AF differentiation 

medium for the subsequent scaffold experiments based on the obtained results (see section 

2.1).  

 

2.4 Adipose stem cell seeding in scaffolds 

The scaffolds were pre-treated with CM 24 h prior to cell seeding. At passages 3-4, hASCs 

were seeded in the scaffolds using micromass, fibrin or direct seeding. In the micromass 

seeding group, hASCs were suspended in MM at high cell density (107 cells/ml) as 

described in section 1.3, and 2 cell suspension droplets of 10 µl were carefully applied to 

the lateral sides of the scaffold. In the fibrin seeding group, 180,000 hASCs were suspended 

in 20 µl of fibrinogen solution (33.3 mg/ml) and then combined with 20 µl of thrombin 

solution (1 U/ml) immediately before pipetting into the scaffold (Baxter Biosurgery, 

Vienna, Austria). In the direct seeding group, 180 000 hASCs were suspended in 40 µl of 
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MM and pipetted directly into the scaffold. It should be noted that in the direct and fibrin 

seeding, the initial cell number was 10% lower than compared to micromass seeding.  The 

maximum number of cells that could be kept in suspension in a 40 µl volume was 180 000. 

A single cell suspension is critical for direct seeding. The cell-seeded scaffolds were 

incubated at 37°C and 5% CO2 for 3 h (micromass and direct seeding groups) to allow cell 

attachment or for 1 h (fibrin seeding group) to allow fibrin gelation before transferring the 

scaffolds to new wells in 24-well plates (Nunc) with 1 ml of DM3. Scaffolds with pure 

fibrin gel without hASCs were used as blanks in all the assays to take into account the 

background caused by the fibrin gel in the assays. In the direct- and micromass seeding 

groups, scaffolds without fibrin and without hASCs were used as blanks. Experiments were 

repeated 3 times with different donors. Technical duplicates of each sample were used in all 

assays.  After 1, 14 and 21 days of culture, the cell-seeded scaffolds were collected for 

biochemical, histological and PCR analysis. 

 

2.5 Annulus fibrosus cell culture in scaffolds  

In order to verify the phenotype of the differentiated hASCs towards AF tissue we used 

human AF cells (ScienCell Research Laboratories, Carlsbad, CA, USA) seeded with fibrin 

gel (human AF cells; ScienCell Research Laboratories, Carlsbad, CA, USA) as a reference 

cell type. Fibrin gel-seeded AF cells have been previously shown to maintain the typical 

features of these cell populations (Colombini et al. 2014). Human AF cells were expanded 

according to the manufacturer’s protocol in a commercially available medium (NPCM; 

ScienCell) at 37°C, 5% CO2.  After expansion, cells of passage 4 were seeded into the 

scaffolds using fibrin gel seeding as described in detail in section 1.4. After 2 and 3 weeks 

of culture, scaffolds were collected for biochemical and PCR analysis. 

 

2.6 Biochemical analysis of the micromass cultures and the cell-seeded scaffolds 

For biochemical analysis, micromass cultures were digested for 48 hours with 1.25 U/ml 

papain (Sigma-Aldrich) at pH 6.5 and 65 oC. Cell-seeded scaffolds were rinsed with PBS 

and digested overnight under identical conditions. The amount of DNA in the micromass 

culture lysates was quantified using 0.2 µg/ml Hoechst 33258 nucleic acid stain (Bio-Rad 

Laboratories Inc., Hercules, CA, USA) with purified calf thymus DNA as a standard (Bio-

Rad). Fluorescence was measured with a multiplate reader (Victor 1420 Multilabel Counter; 
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Wallac, Turku, Finland) using excitation at 360 nm and emission at 460 nm. The amount of 

DNA in the cell-seeded scaffold lysates was evaluated by using the CyQuant proliferation 

assay (Invitrogen, Carlsbad, CA, USA) as previously described by our group  (Haimi et al. 

2009a). A standard curve was prepared by serial dilution of bacteriophage λ DNA 

(Invitrogen). Fluorescence (excitation at 480 nm, emission at 520 nm) was measured using 

a microplate reader (Infinite 200 PRO series, Tecan, Männedorf, Switzerland).  

The total amount of sulphated glycosaminoglycans (sGAG) in the papain lysates of the 

micromass cultures and the cell-seeded scaffolds was analysed with a sGAG assay kit 

(Blyscan, Biocolor Ltd, Carrickfergus, UK) according to manufacturer’s instructions. A 

standard from the kit consisting of chondroitin 4-sulphate sodium salt from bovine trachea 

was used in order to quantify the total amount of sGAG. Absorbance was measured at 656 

nm in the multiplate reader (Victor).   

Total collagen content of the cell-seeded scaffolds was quantified using a hydroxyproline 

assay (Sigma-Aldrich). The papain lysate was hydrolysed in 6N hydrochloric acid solution 

(Sigma-Aldrich) at 110°C for 3 hours followed by quantification of hydroxyproline content 

based on the reaction of oxidized hydroxyproline with 4-(dimethylamino)benzaldehyde 

(DMAB). Absorbance was measured at 544 nm in the multiplate reader (Victor).  Collagen 

content was calculated based on the reported weight ratio of hydroxyproline:collagen of 

0.125 (Edwards and Obrien 1980), assuming that elastin content was negligible. 
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2.7 Histological staining 

Micromass cultures were fixed for 1 h in 4% paraformaldehyde (Sigma-Aldrich), embedded 

in paraffin and sectioned at 5 µm thickness for histological analysis. Proteoglycan 

production in the ECM was assessed by toluidine blue staining (0.1% vol in dH2O; Sigma-

Aldrich) (Tapp et al. 2008). 

Cell attachment and distribution in the scaffolds was evaluated using methylene blue 

staining. Prior to methylene blue (Sigma-Aldrich) staining, the scaffolds were fixed in 4% 

paraformaldehyde solution. After fixation, cells were stained with methylene blue solution 

(1 % in borax (B-3545 Borax (99.5-105 %), Sigma Aldrich) and rinsed with PBS to 

eliminate the excess of methylene blue. Subsequently, cell attachment and distribution in 

the scaffold was assessed using a stereomicroscope (Nikon SMZ-10A with Sony 3CCD 

camera).  

To evaluate collagen deposition, the cell-seeded scaffolds were fixed in 4% 

paraformaldehyde solution, transferred to 5% sucrose (Sigma-Aldrich) overnight, 

embedded in Jung tissue freezing medium (Leica Microsystems, Germany) and frozen at -

20 oC. Subsequently, the scaffolds were sectioned at 14 µm thickness using a Shandon 

cryotome (Cryostat series Shandon, France). The cross-sections were placed on glass slide 

and then dried for 3 days. The production of collagen in the cell-seeded scaffolds was 

evaluated by Picrosirius Red (Polysciences kit, PA, USA) staining following the producer’s 

protocol. The microscopic preparations were visualized with a Nikon E600 

Fluorescence/Histology microscope (Nikon Cooperation, Tokyo, Japan). Polarized light 

was used to detect oriented collagen fibres.  

 

2.8  Gene expression of differentiated hASCs and native AF cells 

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to study 

the relative expression of AF phenotype related genes in micromass cultures and in cell 

seeded scaffolds. Total RNA was isolated using the NucleoSpin® RNA II Total RNA 

isolation kit (Macherey-Nagel GmbH & Co. KG, Germany) according to the manufacturer’s 

instructions. Total RNA yield was measured by optical density at 260 nm with a Nanodrop 

1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA), and sample 

purity was assessed from the ratio of A260/A280. The iScript cDNA Synthesis Kit (Bio-
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Rad, Hercules, CA, USA) was used to prepare cDNA from the total RNA. Reverse 

transcription was performed using a Bio-Rad CFX96 Real-Time PCR system. 

Gene expressions of aggrecan, decorin, collagen type I and type II were analysed in 

micromass cultures. Moreover, also collagen type V expression was analysed in the cell-

seeded scaffolds. Gene expression was assessed by PCR analysis using human acidic 

ribosomal phosphoprotein P0 (RPLP0) as a reference gene, which has been shown to be 

stably expressed under several experimental conditions (Gabrielsson et al. 2005, Fink et al. 

2008). The primer sequences (Sigma-Aldrich) are presented in Table 2.  

Reaction mixtures contained a maximum of 50 ng cDNA, 300 nM forward and reverse 

primers and Power SYBR® Green PCR Master Mix (Applied Biosystems, Foster City, CA, 

United States). The PCR reactions were conducted in duplicates and monitored using the 

ABI Prism® 7300 Sequence Detection System (Applied Biosystems) starting with initial 

activation at 95°C for 10 min, followed by 45 cycles of denaturation at 95°C for 15 s and 

annealing and extending at 60°C for 60 s. The results were normalized to expression of 

RPLP0 according to a mathematical model described by Pfaffl (Pfaffl 2001).  

 

2.9  Statistical analysis 

Statistical analyses were performed with SPSS version 20 (IBM, Armonk, NY, USA). The 

effects of medium composition, cell seeding technique and culture duration on DNA 

content, sulphated GAG content, collagen content and normalized gene expression levels 

were analyzed using Kruskal-Wallis one-way analysis of variance by ranks, followed by a 

Mann-Whitney U post hoc test to analyse specific sample pairs for significant differences. 

The results were considered significant when p<0.05.  

 

3. Results 
3.1 Structural and mechanical scaffold characterization 

A specific truncated cone design was built with a height of 4 mm, a maximum diameter of 

4 mm and a minimum diameter of 3 mm. The built scaffolds had a porosity of 76% with an 

average pore channel diameter of 420 µm (Figure 1C). In order to reproduce the function 

and the structure of the AF tissue, the pore channels mimic the organization and the 

orientation of collagen fibres from native AF tissue. 
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The compression modulus of the cubic designed porous PTMC scaffolds was 0.35±0.10 

MPa. This indicates that the scaffolds are flexible, possibly allowing shearing between 

different lamellae of the native AF (Nerurkar et al. 2009). In future work, the mechanical 

properties of the scaffolds during the whole culture period should be evaluated. 

 

3.2 Adipose stem cell characterization 

Human ASCs demonstrated high expression (>85%) of CD90 (Thy-1) and CD105 

(endoglin), moderate (>50%) or high expression of CD73 (ecto 5’ nucleotidase ) and no or 

low expression (≤2%) of CD11a (lymphocyte function-associated antigen 1), CD14 

(monocyte and macrophage marker), CD19 (dendritic cell marker), CD45RO (pan-

leukocyte marker),  CD80 (B cell marker), CD86 (antigen presenting cell marker),  and 

HLA-DR (HLA class II). The results showed that hASCs expressed most of the specific 

antigens that define human stem cells of mesenchymal origin according to the Mesenchymal 

and Tissue Stem Cell Committee of the ISCT (Dominici et al. 2006). 

 

3.3 Optimization of differentiation medium components in micromass cultures 

The biochemical analyses of the micromasses revealed that the numbers of hASCs were 

significantly higher at both 14 and 21 day time points in the presence of TGF-β3 (DM3 and 

DM1+3) as compared to the CM group (Supplementary data Figure 1a). The total cell 

number did not increase with time in any of the groups. TGF-β3 addition resulted in 

significantly higher amounts of sulphated GAGs in the DM3 and DM1+3 groups compared 

to the CM group at 21 days of culture (Supplementary data Figure 1b).   

These results were consistent with toluidine blue staining (Supplementary data Figure 1c). 

Samples cultured in the presence of TGF-β3 had more specific staining of the proteoglycans 

compared to samples cultured in CM or DM1 at both time points. The highest proteoglycan 

content was found in samples cultured in DM3 for 14 days. At the 21 day time point, 

micromasses cultured in CM were notably smaller compared to samples cultured in the 

presence of TGF-β1 and/or TGF-β3.  

The analysis of AF-specific genes in the micromass cultures at 21 days showed the highest 

aggrecan expressions in hASCs cultured in the presence of TGF-β3 (Supplementary data 

Figure 1d). However, due to donor variation, no significant differences were found. 

Consistent with the biochemical analysis and the toluidine blue staining, the addition of 
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TGF-β1 alone (DM1) or in combination with TGF-β3 (DM1+3) did not significantly 

increase the aggrecan expression compared to the groups without TGF-β1 (CM and DM3, 

respectively). The expressions of decorin, collagen type I and type II between the medium 

groups were not different (data not shown). Based on these results, DM3 was selected for 

further experiments. 

  

3.4 Methylene blue staining of the seeded scaffolds 

Already at day 1, major differences between the different seeding methods were observed 

as only fibrin gel seeding allowed homogenous methylene blue staining indicating uniform 

hASC distribution in the scaffolds (Figure 2). The fibrin gel alone did not significantly take 

up the methylene blue dye as demonstrated in the supplementary information 

(Supplementary data Figure 2). With micromass- and direct seeding of the cells only few 

areas were stained by the methylene blue suggesting poor cell attachment attached in the 

scaffolds. At day 14, the differences were even more pronounced as only with fibrin gel 

seeding hASCs were homogenously attached throughout the scaffold. Instead, hASCs 

seeded by micromass seeding were grown in clusters only near the original seeding sites. 

Direct seeding led to poor distribution of hASCs during the 14 day culture period. 

  

3.5 Biochemical analysis of the seeded scaffolds 

Consistent with the results of methylene blue staining, direct seeding in the scaffolds 

showed significantly lower cell seeding efficiency and proliferation of hASCs compared to 

the other seeding methods at all measured time points (Figure 3a). Cell numbers at 14 and 

21 days were the highest using fibrin gel seeding, the difference being significant compared 

to direct seeding at all-time points. Furthermore, cell numbers increased significantly with 

time in the case of fibrin seeding (p<0.05), while no increase in cell numbers was observed 

with micromass and direct seeding.  Based on the DNA quantification and methylene blue 

results we excluded direct seeding from further analysis. 

Sulphated GAG and collagen assays were implemented in order to quantify the ECM 

production of hASCs seeded by fibrin gel or micromass techniques (Figures 3b and c). At 

14 days, the collagen production was significantly induced by fibrin seeding while the 

difference in sGAG production between the two seeding methods was not significant. The 

superiority of the fibrin seeding method was evident at 21 days as fibrin seeding 
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significantly enhanced both the sulphated GAG and collagen production of hASCs 

compared to micromass seeding. The collagen production increased significantly with time 

in the case of fibrin seeding (p<0.05), while the collagen content of micromass-seeded 

hASCs decreased significantly during the culture period (p<0.05).  

The sGAG/hydroxyproline ratio was used to determine whether the composition of the 

produced ECM of differentiated hASCs was similar compared to that of AF cells and native 

AF tissue (Mwale et al. 2004 ). At both time points, the sGAG/hydroxyproline ratio was 

similar for hASCs and AF cells, both seeded with fibrin (Figure 3d). Interestingly, the 

sGAG/hydroxyproline ratio increased significantly with time in the case of micromass-

seeded hASCs. At day 21, the sGAG/hydroxyproline ratio for micromass-seeded hASCs 

was significantly higher compared to that of fibrin gel-seeded hASCs and AF cells. 

 

3.6 Histological evaluation of scaffolds seeded with hASC  

Picrosirius red staining of the produced collagen matrix in the scaffolds was in accordance 

with the quantification of total collagen content (Figures 4 and 3C). Only fibrin-seeded 

hASCs showed abundant deposition of collagen inside the pore channels (Figure 4B). 

Importantly, polarized light showed the formation and alignment of collagen fibres in this 

condition (Figure 4F). In contrast, scaffolds seeded with hASCs using the micromass 

seeding method (Figure 4C) and the AF cell control (Figure 4D) showed only weak collagen 

formation and no collagen fibres were detected using polarized light (Figures 4G and 4H).  

 

3.7 Gene expression of differentiated hASCs and native AF cells in the scaffolds 

All samples showed expression of aggrecan, decorin, collagen type I, type II and type V at 

14 and 21 days of culture in hASC and AF cell-seeded scaffolds (Figure 5). No statistical 

differences between the gene expression profiles of fibrin gel-seeded hASCs and native 

human AF cells were found. Especially decorin and collagen type II were expressed 

similarly in fibrin gel-seeded hASCs and AF cells. On the contrary, aggrecan, collagen type 

I and type II gene expressions of micromass-seeded hASCs were significantly higher as 

compared to the expressions of the AF cells at both time points.  

 

4. Discussion 
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At present, effective treatment strategies to regenerate and repair ruptured AF tissue do not 

exist. Therefore, there is an unmet clinical need for an effective cell-based strategy to restore 

the biological and biomechanical functions of degenerated AF tissue. Harvested AF cells 

from the disc have been studied as a cell source for AF engineering (Gruber et al. 2009). 

However, the use of AF cells has encountered major challenges due to the extremely limited 

availability of the cells in addition to senescence and decreased or altered ECM production 

(Gruber et al. 2007). Transplantation of hASCs differentiated towards AF-like cells is 

therefore an attractive alternative. This is the first study describing an efficient approach to 

engineer AF tissue in vitro using fibrin gel seeding and differentiation of hASCs stimulated 

by TGF-β3 in AF-mimetic PTMC scaffolds.  

Due to the high biological and functional complexity of AF tissue structure, scaffolds for 

AF tissue engineering require precise and sophisticated geometries. Our results show that 

the combination of fibrin seeded hASCs and the scaffold architecture play a significant role 

in appropriate AF-like matrix production and collagen alignment. This is in agreement with 

a previous study showing that collagen orientation is controlled by large-scale 

microstructures in a scaffold for vascular tissue engineering (Engelmayr et al. 2006). 

Likewise, de Mulder et al. used thermal induced phase separation to prepare a scaffold for 

meniscus repair, in which collagen fibres were oriented through the channel-like pore 

architecture of the scaffold (de Mulder et al. 2013). However, this technique does not allow 

a sufficient control of the pore architecture, which is essential to reach the optimal 

reproduction of the AF tissue structure and function. In consequence, a 3D scaffold with 

specific micro-architecture able to mimic with high precision the complex architecture of 

native AF will allow forcing the cells and the produced collagen to follow the porous 

orientation and therefore reproduce the desired structure and function. 

AF tissue is composed of 15-25 loosely connected concentric lamellae consisting of highly 

organized collagen fibers (Marchand and Ahmed 1990). In the lamella, collagen fibers run 

parallel and are oriented at an angle-ply of 30°, from the transverse section of the IVD, at 

the outer side of the AF evolving to 45° at the inner side (Cassidy et al. 1989). Each lamella 

is alternated with another lamella in the opposite direction. Only a few studies have been 

reported on the development of a scaffold reproducing the complex architecture of the 

collagen fibers in the AF. Nerurkar et al. reported for the first time an electrospun membrane 

which replicates the specific angle-ply displayed by the collagen fibers (Nerurkar et al. 
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2009). However, due to limitations of the electrospinning approach, the membrane scaffold 

was built with only two layers, and cannot be considered as full-sized three-dimensional 

scaffold. The use of a lamellar silk scaffold has also been reported. However, these 

approaches cannot be adapted to our purpose, either due to the isotropic random pore 

structure obtained by the used scaffold preparation process that will influence the 

biomechanical performance (Park et al. 2012), or do not allow the fabrication of a full-sized 

three-dimensional scaffold that is required to repair a  herniated disc (Bhattacharjee et al. 

2012). 

Therefore, none of these previous strategies reported in the literature describe a designed 

scaffold allowing the precise control of the complex organization and orientation of the 

collagen bundles from native tissue. This limitation may be the major reason to explain the 

inability to precisely reproduce oriented collagen fibers in previous works. In consequence, 

our work presented here is the first study describing a designed 3D scaffold with an oriented 

channel-like pore architecture reproducing the complex structure of AF tissue. The scaffold 

design was achieved by precisely respecting the complex and typical multi-lamellar 

organization and angle-ply of the native AF collagen (illustrated in Figure 1A and B) and 

built with a high precision by stereolithography. Furthermore, the truncated cone geometry 

of the scaffold was designed in order to prevent the risk of scaffold extrusion after 

implantation in the disc defect. This specific geometry allows the use of the scaffold as a 

plug and increases the stability of the implanted scaffold inside the defect.  

To obtain efficient in vitro AF differentiation, not only a suitable scaffold design is required 

but also the differentiation medium for hASCs needs to be defined.  Therefore, in the first 

part of this study we defined a suitable AF differentiation medium for hASCs in 2D culture. 

The importance of TGF-β1 or TGF-β3 to maintain the AF cell phenotype in vitro has been 

previously reported in several studies (Colombini et al. 2014, Guillaume et al. 2014). 

However, to the best of our knowledge this is the first study comparing the effects of TGF-

β1 and TGF-β3 or their combination on hASC proliferation and differentiation towards AF 

tissue. Importantly, all the differentiation experiments in this study were done under serum-

free conditions to allow direct application of the results towards clinical therapy. According 

to the biochemical and histological analysis of the micromass cultures, sGAG and 

proteoglycan production was substantially enhanced in the presence of TGF-β3 

(Supplementary data Figure 1). In addition, the gene expression of aggrecan, which is the 
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most abundant proteoglycan in AF tissue (Roughley et al. 2006), was upregulated in hASCs 

cultured in the presence of TGF-β3 further evidencing the role of TGF-β3 in promoting 

hASC differentiation towards AF-like cells. Our results are in line with a recent study where 

TGF-β3 supplementation stimulated matrix deposition of AF cells in vitro (Guillaume et al. 

2014). Furthermore, TGF-β3 has been shown to up-regulate aggregan, collagen type I and 

II gene expression in an in vitro full-organ disc/endplate culture system (Haschtmann et al. 

2012). Although TGF-β1 has been previously demonstrated to promote cellular 

proliferation and collagen production of various human cells including AF cells (Jenner et 

al. 2007, Wipff and Hinz 2008, Turner et al. 2014), TGF-β1 showed a negligible effect on 

AF differentiation of hASCs when supplemented alone. Consistently, Hegewald et al. 

showed no significant benefit of TGF-β1 addition in 3D culture of AF cells (Hegewald et 

al. 2014). In our study, the aggrecan expression was the highest when TGF-β1 was used in 

combination with TGF-β3, however, the difference was not significant. Furthermore, no 

significant differences were found in the expression of decorin, collagen type I and II 

between the different medium groups. Since the addition of TGF-β1 to the TGF-β3 

supplemented medium did not give a significant benefit, DM3 was considered the most 

suitable AF differentiation medium for hASCs. 

In addition to the composition of the differentiation medium, different cell seeding strategies 

have been shown to have a major effect on stem cell fate (Ameer et al. 2002, Colombini et 

al. 2014). However, an efficient cell seeding strategy that supports mesenchymal stem cell 

differentiation towards AF tissue has not been previously reported. We therefore wanted to 

find an efficient cell seeding strategy to stimulate hASC differentiation towards the AF 

phenotype. Direct seeding was used as a reference method since this approach is 

traditionally used to seed cells into 3D scaffolds (Haimi et al. 2009b), and it has been shown 

to be suitable for AF cell culture in 3D scaffolds prepared by stereolithography (Blanquer 

et al. 2013). Interestingly, our results showed that hASCs seeded by direct seeding were 

only poorly attached and spread throughout the scaffolds as compared to micromass and 

fibrin gel seeding. Moreover, the cell seeding efficiency was extremely low in the case of 

direct seeding. These results are consistent with a previous study demonstrating major 

challenges in obtaining a uniform cell distribution in 3D scaffolds using direct cell seeding 

(Lee et al. 2005). Micromass seeding was chosen since it has been used as a standard 

technique to enhance AF differentiation of ASCs in 3D scaffolds (Tapp et al. 2008, Gruber 
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et al. 2010). Nevertheless, in the latter in vitro studies the micromass seeding of hASCs 

even in the presence of TGF-β3 did not allow a sufficient AF-like matrix production 

especially in terms of sufficient collagen production. Scaffolds seeded with hydrogels such 

as hyaluronic acid (Nesti et al. 2008) and fibrin (Sha'ban et al. 2008) in combination with 

cells have been suggested to be useful in AF tissue engineering. In order to trigger hASC 

differentiation towards AF cells, fibrin gel seeding was tested as recent studies demonstrated 

the importance of fibrin to maintain the typical phenotype of AF cells (Colombini et al. 

2014) and to promote the production of ECM (Sha'ban et al. 2008).  

Fibrin seeding of hASC resulted in a significantly enhanced proliferation and AF-like ECM 

formation, as compared to the other seeding strategies. The higher sGAG content of the 

fibrin-seeded scaffolds may be explained by a higher retention of synthesized 

glycosaminoglycans in the fibrin gel as compared to micromass seeding (Ameer et al. 2002). 

Moreover, fibrin seeding resulted in an abundant production of collagen which is the main 

ECM component of AF tissue (Roughley 2004). Collagen production increased 

significantly from 14 to 21 days, indicating that the fibrin seeding method together with the 

designed scaffold fully support the production of collagenous AF-like matrix by the hASCs. 

Not only the production of sGAG and collagen was significantly upregulated, but the 

collagen was also organized in a specific manner. Picrosirius red staining of collagen 

showed that the AF-mimetic architecture of the scaffold led to regularly packed and aligned 

collagen bundles inside the designed pore channels, which is essential for the biomechanical 

function of AF tissue (Nerurkar et al. 2010). This result is remarkable, as we obtained 

abundant collagen production and bundle formation in a 3D porous structure under static 

conditions, without mechanical stimulation. Although the pore characteristics  of our 

scaffold have not yet been optimized, the results obtained in this work do show that collagen 

bundles can be created and that several collagen bundles appear to be aligned along the pore. 

This already is considerable progress in the field. 

The sGAG to hydroxyproline ratio can be used as a specific parameter to distinguish AF 

from nucleus pulposus tissue. We found that this ratio was similar for AF cells 

(approximately 2:1) and differentiated hASCs (approximately 3:1), both seeded with fibrin 

and cultured for 21 days. These ratios correspond closely to the value reported for native 

human AF tissue (approximately 2:1) (Mwale et al. 2004 ). In contrast, the sGAG to 

hydroxyproline ratio for micromass-seeded hASCs was around 57:1, which is significantly 
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different from the ratios for fibrin gel-seeded hASCs and AF cells, tending towards the ratio 

reported for nucleus pulposus tissue (26:1) (Mwale et al. 2004 ).    

To further verify the obtained AF phenotype, we quantified AF-specific markers on the 

mRNA level. Aggrecan and decorin are the most overexpressed proteoglycans while 

collagen type I and II are the major collagens present in the ECM of AF tissue (Roughley 

et al. 2006). However, these collagens are not specific for AF tissue alone.  Instead, collagen 

type V has been shown to be a more specific marker for AF tissue distinguishing AF cells 

from nucleus pulposus cells and chondrocytes (Clouet et al. 2009). In our study, micromass 

and fibrin-seeded hASCs as well as fibrin-seeded AF cells expressed similar levels of 

collagen type V. Due to the notable donor variation of the mRNA expression, results were 

shown as a scatter plot instead of a box plot to demonstrate the response of individual donors 

(Figure 5). This donor variation is a typical of hASCs and other adult stem cells, as has been 

described earlier (Chou et al. 2011, Bieback et al. 2012, Kyllonen et al. 2013). Nevertheless, 

our results show that the AF-related gene expression profiles of fibrin-seeded hASCs and 

human AF cells were not significantly different. These results together with the sGAG to 

hydroxyproline ratio of 3:1 indicate the potential of fibrin seeding of hASCs in AF tissue 

engineering. In contrast, micromass-seeded hASCs differed significantly from the AF cells 

in terms of aggrecan, collagen type I and collagen type II gene expression.  

 

5. Conclusions 
In this study, we demonstrated that stimulation with TGF-β3 induces efficient 

differentiation of hASCs towards AF-like cells. Furthermore, we evaluated the extracellular 

matrix production by hASCs seeded in an AF-mimetic PTMC scaffold using direct, fibrin 

gel or micromass seeding in a defined differentiation medium supplemented with TGF-β3. 

The designed scaffold was prepared by stereolithography in order to mimic the complex 

architecture of native AF tissue in terms of collagen fiber organization and orientation. 

Fibrin gel seeding allowed more uniform cell attachment and spreading in the scaffold, as 

compared to the other seeding methods. Importantly, fibrin seeding significantly stimulated 

sGAG and collagen production with a ratio of sGAG:collagen similar to that of native AF 

tissue. Moreover, it could be observed that several collagen fibers were arranged in regularly 

aligned bundles in the designed pore channels. Only when the fibrin seeding method was 
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used, the phenotype of the differentiated hASCs was similar to that of native AF cells. In 

conclusion, fibrin gel seeding of hASCs in an AF-mimetic PTMC scaffold and subsequent 

culturing in the presence of TGF-β3 is a strategy with great potential to engineer AF tissue 

in vitro.  
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Table 1: Medium compositions used in the study 

Medium Composition 

Maintenance medium 

(MM) 

DMEM-F12 (Gibco); 5-10% human serum (PAA Laboratories 

GmbH, Austria); 1% antibiotics (100 U/ml penicillin; 100 

µg/ml streptomycin; Lonza Biowhittaker, Belgium); 1% vol L-

alanyl-L-glutamine (Glutamax I, Gibco) 

Control chondogenic 

medium (CM) 

DMEM-F12(Gibco®); ITS+1 (BD Biosciences); 0.3% vol 

antibiotics (100 U/ml penicillin; 100 µg/ml streptomycin; 

Lonza); 1% vol L-alanyl-L-glutamine (Glutamax I; Gibco®); 

50 µg/ml L-Ascorbic acid 2-phosphate (Sigma-Aldrich, 

Munich, Germany); 55 µg/ml sodium pyruvate (Lonza); 23 

µg/ml L-proline (Sigma-Aldrich) 

DM1 CM containing 10 ng/ml TGF-β1 (Santa Cruz, Dallas, TX, 

USA) 

DM3 CM containing 10 ng/ml TGF-β3 (Prospec, Rehovot, Israel) 

DM1+3 CM containing 10 ng/ml TGF-β1, 10 ng/ml TGF-β3 
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Table 2: Reverse and forward primer sequences used for PCR assay 

Gene Primer sequence Product size 

acidic ribosomal 

phosphoprotein 

P0 

Forward:  5'-AAT CTC CAG GGG CAC CAT T-3' 70 bp 

Reverse 5'-CGC TGG CTC CCA CTT TGT-3'  

aggrecan Forward:  5'-TCG AGG ACA GCG AGG CC-3' 85 bp 

Reverse:  5'-TCG AGG GTG TAG CGT GTA GAG A-3'  

decorin Forward:  5’- CTC TGC TGT TGA CAA TGG CTC TCT -3’ 135 bp 

 Reverse: 5’- TGG ATG GCT GTA TCT CCC AGT ACT -3’  

collagen type I Forward:  5'-CCA GAA GAA CTG GTA CAT CAG CAA-3' 140 bp 

Reverse:  5'-CGC CAT ACT CGA ACT GGA ATC-3'  

collagen type II Forward:  5'-GAG ACA GCA TGA CGC CGA G-3' 67 bp 

 Reverse:  5'-GCG GAT GCT CTC AAT CTG GT-3'  

collagen type V Forward:  5'-TGA GTT GTG GAG CTG ACT CTA ATC-3' 181 bp 

 Reverse:  5'-TAA CAG AAG CAT AGC ACC TTT CAG-3'  
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Figure 1: Computer-aided design (CAD) representation of 15 bilayer lamella of collagen (A) with the typical 

overlapping lamella organization and angle-ply (from 30° to 45°) of the native AF. CAD representation of the  

the 3D scaffold,(B) with the pore channels that follow the orientation from peripheral to central as the collagen 

fibres in the native AF tissue. Photographic image of the PTMC scaffolds built by stereolithography (C). High 

resolution SEM image of the built PTMC scaffold (D). 
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Figure 2: Methylene blue staining of differentiated hASCs seeded with direct (A and D), micromass (B and 

E) and fibrin gel (C and F) techniques in scaffolds at 1 and 14 days. Scale bar: 500µm.  
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b)

 

c)

 

d) 

 

Figure 3: Relative DNA content of differentiated hASCs seeded with direct, micromass and fibrin seeding 

after 1, 14 and 21 days of culture (a); Sulphated GAG content (b) and total collagen (c) of differentiated hASCs 

seeded with micromass and fibrin seeding at 14 and 21 days of culture. Sulphated GAG/hydroxyproline ratio 
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(d) of differentiated hASCs seeded with micromass and fibrin seeding and human AF cells at 14 and 21 days 

of culture. The results are expressed as mean ± standard deviation (* p<0.05). 

 
 
 

Figure 4: Picrosirius red staining of collagen and deposition of collagen fiber bundles (polarized light shows 

the alignment of collagen fibres) of differentiated hASCs using fibrin gel (B and E) and micromass (C and F) 

seeding at 21 day time point as well as the blank scaffold with fibrin without cell (A and D) . Scale bar: 200 

µm 
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Figure 5: The relative expression of aggrecan (a), decorin (b), collagen type I (c), collagen type II (d) and 

collagen type V (e) of differentiated hASC and human AF cells seeded scaffolds at 14 and 21 days of culture. 

The results are presented relative to the mean expression in human AF cells at 14 days. The different markers 

in the figure indicate different donors. Median expression is marked with a horizontal line (* p<0.05). 
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d)

 

 

Supplementary figure 1:  a) DNA content, b) sulphated GAG content c) Toluidine blue staining; nucleic acids 

are stained blue and proteoglycans and their associated GAGs are stained purple (Scale bar: 500µm) d) 

aggregan gene expression of hASC micromasses cultured for 14 and 21 days in chondrogenic medium (CM), 

CM supplemented with 10 ng/ml TGFβ1 (DM1), 10 ng/ml TGF-β3 (DM3) or both 10 ng/ml TGFβ1 and 10 

ng/ml TGFβ (DM1+3). The results are expressed as mean ± standard deviation (* p<0.05). Based on these 

results DM3 was selected for the further experiments. 
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Supplementary figure 2: Methylene blue-stained scaffold with fibrin and without hASCs, demonstrating that 

fibrin gel alone did not take up significantly the methylene blue dye. 
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