312 research outputs found

    Sequence determinants in human polyadenylation site selection

    Get PDF
    BACKGROUND: Differential polyadenylation is a widespread mechanism in higher eukaryotes producing mRNAs with different 3' ends in different contexts. This involves several alternative polyadenylation sites in the 3' UTR, each with its specific strength. Here, we analyze the vicinity of human polyadenylation signals in search of patterns that would help discriminate strong and weak polyadenylation sites, or true sites from randomly occurring signals. RESULTS: We used human genomic sequences to retrieve the region downstream of polyadenylation signals, usually absent from cDNA or mRNA databases. Analyzing 4956 EST-validated polyadenylation sites and their -300/+300 nt flanking regions, we clearly visualized the upstream (USE) and downstream (DSE) sequence elements, both characterized by U-rich (not GU-rich) segments. The presence of a USE and a DSE is the main feature distinguishing true polyadenylation sites from randomly occurring A(A/U)UAAA hexamers. While USEs are indifferently associated with strong and weak poly(A) sites, DSEs are more conspicuous near strong poly(A) sites. We then used the region encompassing the hexamer and DSE as a training set for poly(A) site identification by the ERPIN program and achieved a prediction specificity of 69 to 85% for a sensitivity of 56%. CONCLUSION: The availability of complete genomes and large EST sequence databases now permit large-scale observation of polyadenylation sites. Both U-rich sequences flanking both sides of poly(A) signals contribute to the definition of "true" sites. However, the downstream U-rich sequences may also play an enhancing role. Based on this information, poly(A) site prediction accuracy was moderately but consistently improved compared to the best previously available algorithm

    The Mode of Action of Maleic Hydrazide: Inhibition of Growth

    Full text link
    Maleic hydrazide (MH) inhibits corn root elongation through an effect on cell division apparently without inhibiting cell enlargement. The decrease in the rate of elongation was apparent only after a considerable lag, over 14 hours, even with a concentration as high as 5 mM. MH (1 mM) did not inhibit His growth of roots from corn seeds given very large doses of Γ-irradiation or excised corn root segments including the elongation Zone or the cell enlargement induced by IAA in corn coleoptile sections. Many compounds including purines, pyrimidines, nucleosides. cysteine, pyridoxal, pyruvate. kinetin and CoCl 2 , many of which had previously been reported to alleviate MH inhibition in other tissues, were tested for their ability to prevent the inhibition of corn root elongation by MH, but none were effective. These data do not support the theory that MH acts by inhibiting the synthesis of or competing with some simple metabolite or hormone. Whatever its mechanism of action the failure of MH to inhibit cell enlargement in most systems indicates that it is fairly selective.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74891/1/j.1399-3054.1969.tb07375.x.pd

    Evaluation of Glycine max mRNA clusters

    Get PDF
    BACKGROUND: Clustering the ESTs from a large dataset representing a single species is a convenient starting point for a number of investigations into gene discovery, genome evolution, expression patterns, and alternatively spliced transcripts. Several methods have been developed to accomplish this, the most widely available being UniGene, a public domain collection of gene-oriented clusters for over 45 different species created and maintained by NCBI. The goal is for each cluster to represent a unique gene, but currently it is not known how closely the overall results represent that reality. UniGene's build procedure begins with initial mRNA clusters before joining ESTs. UniGene's results for soybean indicate a significant amount of redundancy among some sequences reported to be unique mRNAs. To establish a valid non-redundant known gene set for Glycine max we applied our algorithm to the clustering of only mRNA sequences. The mRNA dataset was run through the algorithm using two different matching stringencies. The resulting cluster compositions were compared to each other and to UniGene. Clusters exhibiting differences among the three methods were analyzed by 1) nucleotide and amino acid alignment and 2) submitting authors conclusions to determine whether members of a single cluster represented the same gene or not. RESULTS: Of the 12 clusters that were examined closely most contained examples of sequences that did not belong in the same cluster. However, neither the two stringencies of PECT nor UniGene had a significantly greater record of accuracy in placing paralogs into separate clusters. CONCLUSION: Our results reveal that, although each method produces some errors, using multiple stringencies for matching or a sequential hierarchical method of increasing stringencies can provide more reliable results and therefore allow greater confidence in the vast majority of clusters that contain only ESTs and no mRNA sequences

    High incidence of Epstein-Barr virus, cytomegalovirus and human herpesvirus 6 infections in children with cancer

    Get PDF
    BACKGROUND: A prospective single-center study was performed to study infection with lymphotropic herpesviruses (LH) Epstein-Barr virus (EBV), cytomegalovirus (CMV) and human herpesvirus 6 (HHV-6) in children with cancer. METHODS: The group of 186 children was examined for the presence of LH before, during and 2 months after the end of anticancer treatment. Serology of EBV and CMV was monitored in all children, serology of HHV-6 and DNA analysis of all three LH was monitored in 70 children. RESULTS: At the time of cancer diagnosis (pre-treatment), there was no difference between cancer patients and age-matched healthy controls in overall IgG seropositivity for EBV (68.8% vs. 72.0%; p = 0.47) and CMV (37.6% vs. 41.7%; p = 0.36). During anticancer therapy, primary or reactivated EBV and CMV infection was present in 65 (34.9%) and 66 (35.4%) of 186 patients, respectively, leading to increased overall post-treatment IgG seropositivity that was significantly different from controls for EBV (86.6% vs. 72.0%; p = 0.0004) and CMV (67.7% vs. 41.7%; p < 0.0001). Overall pre-treatment IgG seropositivity for HHV-6 was significantly lower in patients than in controls (80.6% vs. 91.3%; p = 0.0231) which may be in agreement with Greaves hypothesis of protective effect of common infections in infancy to cancer development. Primary or reactivated HHV-6 infection was present in 23 (32.9%) of 70 patients during anticancer therapy leading to post-treatment IgG seropositivity that was not significantly different from controls (94.3% vs. 91.3%; p = 0.58). The LH infection occurred independently from leukodepleted blood transfusions given. Combination of serology and DNA analysis in detection of symptomatic EBV or CMV infection was superior to serology alone. CONCLUSION: EBV, CMV and HHV-6 infections are frequently present during therapy of pediatric malignancy

    RNAcentral: A vision for an international database of RNA sequences

    Get PDF
    During the last decade there has been a great increase in the number of noncoding RNA genes identified, including new classes such as microRNAs and piRNAs. There is also a large growth in the amount of experimental characterization of these RNA components. Despite this growth in information, it is still difficult for researchers to access RNA data, because key data resources for noncoding RNAs have not yet been created. The most pressing omission is the lack of a comprehensive RNA sequence database, much like UniProt, which provides a comprehensive set of protein knowledge. In this article we propose the creation of a new open public resource that we term RNAcentral, which will contain a comprehensive collection of RNA sequences and fill an important gap in the provision of biomedical databases. We envision RNA researchers from all over the world joining a federated RNAcentral network, contributing specialized knowledge and databases. RNAcentral would centralize key data that are currently held across a variety of databases, allowing researchers instant access to a single, unified resource. This resource would facilitate the next generation of RNA research and help drive further discoveries, including those that improve food production and human and animal health. We encourage additional RNA database resources and research groups to join this effort. We aim to obtain international network funding to further this endeavor

    Predicting RNA secondary structure by the comparative approach: how to select the homologous sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The secondary structure of an RNA must be known before the relationship between its structure and function can be determined. One way to predict the secondary structure of an RNA is to identify covarying residues that maintain the pairings (Watson-Crick, Wobble and non-canonical pairings). This "comparative approach" consists of identifying mutations from homologous sequence alignments. The sequences must covary enough for compensatory mutations to be revealed, but comparison is difficult if they are too different. Thus the choice of homologous sequences is critical. While many possible combinations of homologous sequences may be used for prediction, only a few will give good structure predictions. This can be due to poor quality alignment in stems or to the variability of certain sequences. This problem of sequence selection is currently unsolved.</p> <p>Results</p> <p>This paper describes an algorithm, <it>SSCA</it>, which measures the suitability of sequences for the comparative approach. It is based on evolutionary models with structure constraints, particularly those on sequence variations and stem alignment. We propose three models, based on different constraints on sequence alignments. We show the results of the <it>SSCA </it>algorithm for predicting the secondary structure of several RNAs. <it>SSCA </it>enabled us to choose sets of homologous sequences that gave better predictions than arbitrarily chosen sets of homologous sequences.</p> <p>Conclusion</p> <p><it>SSCA </it>is an algorithm for selecting combinations of RNA homologous sequences suitable for secondary structure predictions with the comparative approach.</p

    nocoRNAc: Characterization of non-coding RNAs in prokaryotes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interest in non-coding RNAs (ncRNAs) constantly rose during the past few years because of the wide spectrum of biological processes in which they are involved. This led to the discovery of numerous ncRNA genes across many species. However, for most organisms the non-coding transcriptome still remains unexplored to a great extent. Various experimental techniques for the identification of ncRNA transcripts are available, but as these methods are costly and time-consuming, there is a need for computational methods that allow the detection of functional RNAs in complete genomes in order to suggest elements for further experiments. Several programs for the genome-wide prediction of functional RNAs have been developed but most of them predict a genomic locus with no indication whether the element is transcribed or not.</p> <p>Results</p> <p>We present <smcaps>NOCO</smcaps>RNAc, a program for the genome-wide prediction of ncRNA transcripts in bacteria. <smcaps>NOCO</smcaps>RNAc incorporates various procedures for the detection of transcriptional features which are then integrated with functional ncRNA loci to determine the transcript coordinates. We applied RNAz and <smcaps>NOCO</smcaps>RNAc to the genome of <it>Streptomyces coelicolor </it>and detected more than 800 putative ncRNA transcripts most of them located antisense to protein-coding regions. Using a custom design microarray we profiled the expression of about 400 of these elements and found more than 300 to be transcribed, 38 of them are predicted novel ncRNA genes in intergenic regions. The expression patterns of many ncRNAs are similarly complex as those of the protein-coding genes, in particular many antisense ncRNAs show a high expression correlation with their protein-coding partner.</p> <p>Conclusions</p> <p>We have developed <smcaps>NOCO</smcaps>RNAc, a framework that facilitates the automated characterization of functional ncRNAs. <smcaps>NOCO</smcaps>RNAc increases the confidence of predicted ncRNA loci, especially if they contain transcribed ncRNAs. <smcaps>NOCO</smcaps>RNAc is not restricted to intergenic regions, but it is applicable to the prediction of ncRNA transcripts in whole microbial genomes. The software as well as a user guide and example data is available at <url>http://www.zbit.uni-tuebingen.de/pas/nocornac.htm</url>.</p

    Entropy Measures Quantify Global Splicing Disorders in Cancer

    Get PDF
    Most mammalian genes are able to express several splice variants in a phenomenon known as alternative splicing. Serious alterations of alternative splicing occur in cancer tissues, leading to expression of multiple aberrant splice forms. Most studies of alternative splicing defects have focused on the identification of cancer-specific splice variants as potential therapeutic targets. Here, we examine instead the bulk of non-specific transcript isoforms and analyze their level of disorder using a measure of uncertainty called Shannon's entropy. We compare isoform expression entropy in normal and cancer tissues from the same anatomical site for different classes of transcript variations: alternative splicing, polyadenylation, and transcription initiation. Whereas alternative initiation and polyadenylation show no significant gain or loss of entropy between normal and cancer tissues, alternative splicing shows highly significant entropy gains for 13 of the 27 cancers studied. This entropy gain is characterized by a flattening in the expression profile of normal isoforms and is correlated to the level of estimated cellular proliferation in the cancer tissue. Interestingly, the genes that present the highest entropy gain are enriched in splicing factors. We provide here the first quantitative estimate of splicing disruption in cancer. The expression of normal splice variants is widely and significantly disrupted in at least half of the cancers studied. We postulate that such splicing disorders may develop in part from splicing alteration in key splice factors, which in turn significantly impact multiple target genes
    • 

    corecore