2,591 research outputs found
On the transmission of light through a single rectangular hole
In this Letter we show that a single rectangular hole exhibits transmission
resonances that appear near the cutoff wavelength of the hole waveguide. For
light polarized with the electric field pointing along the short axis, it is
shown that the normalized-to-area transmittance at resonance is proportional to
the ratio between the long and short sides, and to the dielectric constant
inside the hole. Importantly, this resonant transmission process is accompanied
by a huge enhancement of the electric field at both entrance and exit
interfaces of the hole. These findings open the possibility of using
rectangular holes for spectroscopic purposes or for exploring non-linear
effects.Comment: Submitted to PRL on Feb. 9th, 200
FUSE Observations of Nebular O VI Emission from NGC 6543
NGC 6543 is one of the few planetary nebulae (PNe) whose X-ray emission has
been shown to be extended and originate from hot interior gas. Using FUSE
observations we have now detected nebular O VI emission from NGC 6543. Its
central star, with an effective temperature of ~50,000 K, is too cool to
photoionize O V, so the O VI ions must have been produced by thermal collisions
at the interface between the hot interior gas and the cool nebular shell. We
modeled the O VI emission incorporating thermal conduction, but find that
simplistic assumptions for the AGB and fast wind mass loss rates overproduce
X-ray emission and O VI emission. We have therefore adopted the pressure of the
interior hot gas for the interface layer and find that expected O VI emission
to be comparable to the observations.Comment: 4 pages, 4 figures, 1 table, using emulateapj.cls style. Accepted for
publication in ApJ Letter
Liquid hot water pretreatment and enzymatic hydrolysis as a valorization route of Italian green pepper waste to delivery free sugars
In this work, liquid hot water pretreatment (autohydrolysis) was used to improve enzymatic hydrolysis of a commonly consumed vegetable waste in Spain, Italian green pepper, to finally produce fermentable sugars. Firstly, the effect of temperature and contact time on sugar recovery during pretreatment (in insoluble solid and liquid fraction) was studied in detail. Then, enzymatic hydrolysis using commercial cellulase was performed with the insoluble solid resulting from pretreatment. The objective was to compare results with and without pretreatment. The results showed that the pretreatment step was effective to facilitate the sugars release in enzymatic hydrolysis, increasing the global sugar yield. This was especially notable when pretreatment was carried out at 180 °C for 40 min for glucose yields. In these conditions a global glucose yield of 61.02% was obtained. In addition, very low concentrations of phenolic compounds (ranging from 69.12 to 82.24 mg/L) were found in the liquid fraction from enzymatic hydrolysis, decreasing the possibility of fermentation inhibition produced by these components. Results showed that Italian green pepper is an interesting feedstock to obtain free sugars and prevent the enormous quantity of this food waste discarded annually
Widespread HCO emission in the M82's nuclear starburst
We present a high-resolution (~ 5'') image of the nucleus of M82 showing the
presence of widespread emission of the formyl radical (HCO). The HCO map, the
first obtained in an external galaxy, reveals the existence of a structured
disk of ~ 650 pc full diameter. The HCO distribution in the plane mimics the
ring morphology displayed by other molecular/ionized gas tracers in M82. More
precisely, rings traced by HCO, CO and HII regions are nested, with the HCO
ring lying in the outer edge of the molecular torus. Observations of HCO in
galactic clouds indicate that the abundance of HCO is strongly enhanced in the
interfaces between the ionized and molecular gas. The surprisingly high overall
abundance of HCO measured in M82 (X(HCO) ~ 4x10^{-10}) indicates that its
nuclear disk can be viewed as a giant Photon Dominated Region (PDR) of ~ 650 pc
size. The existence of various nested gas rings, with the highest HCO abundance
occurring at the outer ring (X(HCO) ~ 0.8x10^{-9}), suggests that PDR chemistry
is propagating in the disk. We discuss the inferred large abundances of HCO in
M82 in the context of a starburst evolutionary scenario, picturing the M82
nucleus as an evolved starburst.Comment: 13 pages, 3 figures, to appear in ApJ Letters; corrected list of
author
Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells
Spontaneous in vitro transformation of human primary cells was, and continues to be, a scarcely described phenomenon. Only the description of the generation of the HaCAT cell line [1] is a canonical example, worldwide accepted. More recent examples included the emergence of tumorogenic populations upon in vitro culture of fetal human mesenchymal stem cells (hMSC), induced by GM-CSF and IL-4, [2] and bone marrow hMSC [3]. Other examples have also been reported after very long-term in vitro culture of telomerized hMSCTerT [4]. In this scenario, our previous results [5-7] were only a new observation to be added to this list. Only very recently similar results have been published [8], reporting spontaneous malignant transformation in 46 % of bone marrow–derived hMSC long-term cultures (5–106 weeks). However, other authors reported opposite results.S
Evolution of the silicon bottom cell photovoltaic behavior during III-V on Si multi-junction solar cells production
The evolution of the Si bulk minority carrier lifetime during the heteroepitaxial growth of III-V on Si multi-junction solar cell structures via metal-organic vapor phase epitaxy has been analyzed. Initially, the emitter formation produces important lifetime degradation. Nevertheless, a progressive recovery was observed during the growth of the metamorphic GaAsP/Si structure. A step-wise mechanism has been proposed to explain the lifetime evolution observed during this process. The initial lifetime degradation is believed to be related to the formation of thermally-induced defects within the Si bulk. These defects are subsequently passivated by fast-diffusing atomic hydrogen -coming from precursor (i.e. PH3 and AsH3) pyrolysis- during the subsequent III-V growth. These results indicate that the MOVPE environment used to create the III-V/Si solar cell structures has a dynamic impact on the minority carrier lifetime. Consequently, designing processes that promote the recovery of the lifetime is a must to support the production of high-quality III-V/Si solar cells
Transcriptome profiling of Set5 and Set1 methyltransferases: Tools for visualization of gene expression
AbstractCells regulate transcription by coordinating the activities of multiple histone modifying complexes. We recently identified the yeast histone H4 methyltransferase Set5 and discovered functional overlap with the histone H3 methyltransferase Set1 in gene expression. Specifically, using next-generation RNA sequencing (RNA-Seq), we found that Set5 and Set1 function synergistically to regulate specific transcriptional programs at subtelomeres and transposable elements. Here we provide a comprehensive description of the methodology and analysis tools corresponding to the data deposited in NCBI's Gene Expression Omnibus (GEO) under the accession number GSE52086. This data complements the experimental methods described in Mas MartÃn G et al. (2014) and provides the means to explore the cooperative functions of histone H3 and H4 methyltransferases in the regulation of transcription. Furthermore, a fully annotated R code is included to enable researchers to use the following computational tools: comparison of significant differential expression (SDE) profiles; gene ontology enrichment of SDE; and enrichment of SDE relative to chromosomal features, such as centromeres, telomeres, and transposable elements. Overall, we present a bioinformatics platform that can be generally implemented for similar analyses with different datasets and in different organisms
Is DNA Damage Response Ready for Action Anywhere?
Organisms are continuously exposed to DNA damaging agents, consequently, cells have developed an intricate system known as the DNA damage response (DDR) in order to detect and repair DNA lesions. This response has to be rapid and accurate in order to keep genome integrity. It has been observed that the condensation state of chromatin hinders a proper DDR. However, the condensation state of chromatin is not the only barrier to DDR. In this review, we have collected data regarding the presence of DDR factors on micronuclear DNA lesions that indicate that micronuclei are almost incapable of generating an effective DDR because of defects in their nuclear envelope. Finally, considering the recent observations about the reincorporation of micronuclei to the main bulk of chromosomes, we suggest that, under certain circumstances, micronuclei carrying DNA damage might be a source of chromosome instability
New results on lower bounds for the number of k-facets
In this paper we present three different results dealing with the number of (≤ k)- facets of a set of points: (i) We give structural properties of sets in the plane that achieve the optimal lower bound 3_k+2 2 _ of (≤ k)-edges for a fixed k ≤ [n/3 ]− 1; (ii) We show that the new lower bound 3((k+2) 2 ) + 3((k−(n/ 3)+2) 2 ) for the number of (≤ k)-edges of a planar point set is optimal in the range [n/3] ≤ k ≤ [5n/12] − 1; (iii) We show that for k < n/4 the number of (≤ k)-facets of a set of n points in R3 in general position is at least 4((k+3 )3 ), and that this bound is tight in that range
- …