21,634 research outputs found

    A recipe for an unpredictable random number generator

    Get PDF
    In this work we present a model for computation of random processes in digital computers which solves the problem of periodic sequences and hidden errors produced by correlations. We show that systems with non-invertible non-linearities can produce unpredictable sequences of independent random numbers. We illustrate our result with some numerical calculations related with random walks simulations.Comment: 8 pages, 5 figures, Proceedings Mochima spring school in theoretial physic

    Non-reciprocal few-photon devices based on chiral waveguide-emitter couplings

    Full text link
    We demonstrate the possibility of designing efficient, non reciprocal few-photon devices by exploiting the chiral coupling between two waveguide modes and a single quantum emitter. We show how this system can induce non-reciprocal photon transport at the single-photon level and act as an optical diode. Afterwards, we also show how the same system shows a transistor-like behaviour for a two-photon input. The efficiency in both cases is shown to be large for feasible experimental implementations. Our results illustrate the potential of chiral waveguide-emitter couplings for applications in quantum circuitry.Comment: Mathematica notebook attached for calculation of detection probabilitie

    Line-of-sight velocity distributions of elliptical galaxies from collisionless mergers

    Get PDF
    We analyse the skewness of the line-of-sight velocity distributions in model elliptical galaxies built through collisionless galaxy mergers. We build the models using large N-body simulations of mergers between either two spiral or two elliptical galaxies. Our aim is to investigate whether the observed ranges of skewness coefficient (h3) and the rotational support (V/sigma), as well as the anticorrelation between h3 and V, may be reproduced through collisionless mergers. Previous attempts using N-body simulations failed to reach V/sigma ~ 1-2 and corresponding high h3 values, which suggested that gas dynamics and ensuing star formation might be needed in order to explain the skewness properties of ellipticals through mergers. Here we show that high V/sigma and high h3 are reproduced in collisionless spiral-spiral mergers whenever a central bulge allows the discs to retain some of their original angular momentum during the merger. We also show that elliptical-elliptical mergers, unless merging from a high-angular momentum orbit, reproduce the strong skewness observed in non-rotating, giant, boxy ellipticals. The behaviour of the h3 coefficient therefore associates rapidly-rotating disky ellipticals to disc-disc mergers, and associates boxy, slowly-rotating giant ellipticals to elliptical-elliptical mergers, a framework generally consistent with the expectations of hierarchical galaxy formation.Comment: 5 pages, 4 figures, MNRAS Letters, in pres

    Quantum Decoherence of Photons in the Presence of Hidden U(1)s

    Get PDF
    Many extensions of the standard model predict the existence of hidden sectors that may contain unbroken abelian gauge groups. We argue that in the presence of quantum decoherence photons may convert into hidden photons on sufficiently long time scales and show that this effect is strongly constrained by CMB and supernova data. In particular, Planck-scale suppressed decoherence scales D ~ E^2/M_Pl (characteristic for non-critical string theories) are incompatible with the presence of even a single hidden U(1). The corresponding bounds on the decoherence scale are four orders of magnitude stronger than analogous bounds derived from solar and reactor neutrino data and complement other bounds derived from atmospheric neutrino data.Comment: 8 pages, 9 figure
    corecore