22 research outputs found

    Geophysical-petrological modeling of the lithosphere beneath the Cantabrian Mountains and the North-Iberian margin: geodynamic implications

    No full text
    Cenozoic contractional deformation in the North-Iberian continental margin (southern Bay of Biscay) led to the uplift of the Cantabrian Mountains and the northward subduction of part of the thick continental crust, down to at least ~ 55 km depth beneath the coastline, and perhaps even ~ 30–40 km deeper. In order to provide a more constrained model of this unique structure and gain insight into the factors controlling its evolution, we performed an integrated geophysical-petrological modeling of the lithosphere along a 470 km-long, N-S transect down to 400 km depth. The methodology used allows for fitting gravity anomalies, geoid undulations, surface heat flow, elevation and seismic velocities with a realistic distribution of densities and seismic velocities in the mantle and the subducting lower crust, which are dependent on chemical composition, pressure and temperature. Two models are presented, with variable maximum depth for the crustal root: 60 km (Model A) and 90 km (Model B). Results indicate that both models are feasible from the geophysical point of view, but the shallower root agrees slightly better with tomographic results. The thickness of the thermal lithosphere in Model A varies from 125–145 km south of the Cantabrian Mountains to 170 km beneath the crustal root and 135–140 km beneath the central part of the Bay of Biscay. Model B requires a thicker thermal lithosphere beneath the crustal root (205 km). Low seismic velocities beneath the Bay of Biscay Moho and in the mantle wedge above the crustal root are explained by the addition of 1–2 wt% of water. Input from dehydration reactions in the subducting lower crust is ruled out in Model A and has a very minor influence in Model B. We therefore interpret the water to have percolated from the seafloor during the formation of the margin in the Mesozoic. A later basaltic underplating was also inferred. A tentative evolutionary model (to a great extent governed by these petrological processes) is proposed, implying a minimum shortening close to 100 km from the Latest Cretaceous to the present

    Graphene Oxide as Support for Layered Double Hydroxides: Enhancing the CO<sub>2</sub> Adsorption Capacity

    No full text
    Layered double hydroxides (LDHs) show great potential as CO<sub>2</sub> adsorbent materials, but require improvements in stability and CO<sub>2</sub> adsorption capacity for commercial applications. In the current study, graphene oxide provides a light-weight, charge-complementary, two-dimensional (2D) material that interacts effectively with the 2D LDHs, in turn enhancing the CO<sub>2</sub> uptake capacity and multicycle stability of the assembly. As a result, the absolute capacity of the LDH was increased by 62% using only 7 wt % graphene oxide (GO) as a support. The experimental procedure for the synthesis of the materials is based on a direct precipitation of the LDH nanoparticles onto GO followed by a structural and physical characterization by electron microscopy, X-ray diffraction, thermogravimetric analysis, and Brunauer–Emmett–Teller (BET) surface area measurements. Detailed titration confirmed the compatibility of the surface chemistry. After thermal decomposition, mixed metal oxides (MMOs) are obtained with the basic sites required for the CO<sub>2</sub> adsorption. A range of samples with different proportions of GO/MMO were prepared, fully characterized, and correlated with the CO<sub>2</sub> sorption capacity, established via TGA

    Graphene oxide/mixed metal oxide hybrid materials for enhanced adsorption desulfurization of liquid hydrocarbon fuels

    No full text
    A series of mixed metal oxides (MMOs) adsorbents (MgAl-, CuAl- and CoAl-MMOs) were supported on graphene oxide (GO) through in-situ precipitation of layered double hydroxides (LDHs) onto exfoliated GO, followed by thermal conversion. The study shows that GO is an excellent support for the LDH-derived MMOs due to matching geometry and charge complementarity, resulting in a strong hybrid effect, evidenced by significantly enhanced adsorption performance for the commercially important removal of heavy thiophenic compounds from hydrocarbons. Fundamental liquid-phase adsorption characteristics of the MMO/GO hybrids are quantified in terms of adsorption equilibrium isotherms, selectivity and adsorbent regenerability. Upon incorporation of as little as 5 wt% GO into the MMO material, the organosulfur uptake was increased by up to 170%, the recycling stability was markedly improved and pronounced selectivity for thiophenic organosulfurs over sulfur-free aromatic hydrocarbons was observed
    corecore