94 research outputs found

    Analysis of acoustic emission during the melting of embedded indium particles in an aluminum matrix: a study of plastic strain accommodation during phase transformation

    Full text link
    Acoustic emission is used here to study melting and solidification of embedded indium particles in the size range of 0.2 to 3 um in diameter and to show that dislocation generation occurs in the aluminum matrix to accommodate a 2.5% volume change. The volume averaged acoustic energy produced by indium particle melting is similar to that reported for bainite formation upon continuous cooling. A mechanism of prismatic loop generation is proposed to accommodate the volume change and an upper limit to the geometrically necessary increase in dislocation density is calculated as 4.1 x 10^9 cm^-2 for the Al-17In alloy. Thermomechanical processing is also used to change the size and distribution of the indium particles within the aluminum matrix. Dislocation generation with accompanied acoustic emission occurs when the melting indium particles are associated with grain boundaries or upon solidification where the solid-liquid interfaces act as free surfaces to facilitate dislocation generation. Acoustic emission is not observed for indium particles that require super heating and exhibit elevated melting temperatures. The acoustic emission work corroborates previously proposed relaxation mechanisms from prior internal friction studies and that the superheat observed for melting of these micron-sized particles is a result of matrix constraint.Comment: Presented at "Atomistic Effects in Migrating Interphase Interfaces - Recent Progress and Future Study" TMS 201

    Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical Report). Part 2: crystallinity and supra molecular structure

    Get PDF
    Test methods including OM, SEM, TEM, DSC, SAXS, WAXS, and IR were used to characterise supra-molecular structure in three batches of polyethylene (PE), which had weight-average relative molar masses ¯¯¯¯ M w of approximately 0.6 × 106, 5 × 106, and 9 × 106. They were applied to compression mouldings made by the polymer manufacturer. Electron microscopy showed that powders formed in the polymerization reactor consisted of irregularly shaped grains between 50 and 250 μm in diameter. Higher magnification revealed that each grain was an aggregate, composed of particles between 0.4 and 0.8 μm in diameter, which were connected by long, thin fibrils. In compression mouldings, lamellar thicknesses ranged from 7 to 23 nm. Crystallinity varied between 70 and 75 % in reactor powder, but was lower in compression mouldings. Melting peak temperatures ranged from 138 to 145 °C, depending on processing history. DMTA showed that the glass transition temperature θg was −120 °C for all three grades of polyethylene. IR spectroscopy found negligibly small levels of oxidation and thermal degradation in mouldings. Optical microscopy revealed the presence of visible fusion defects at grain boundaries. It is concluded that relatively weak defects can be characterized using optical microscopy, but there is a need for improved methods that can detect less obvious fusion defects

    Observation of a three-dimensional fractional Hall response in HfTe5

    Get PDF
    Interacting electrons in two dimensions can bind magnetic flux lines to form composite quasiparticles with fractional electric charge, manifesting themselves in the fractional quantum Hall effect (FQHE). Although the FQHE has also been predicted to occur in three dimensions, it has not yet been experimentally observed. Here, we report the observation of fractional plateaus in the Hall conductivity of the bulk semimetal HfTe5 at magnetic fields beyond the quantum limit. The plateaus are accompanied by Shubnikov-de Haas minima of the longitudinal electrical resistivity. The height of the Hall plateaus is given by twice the Fermi wave vector in the direction of the applied magnetic field and scales with integer and particular fractional multiples of the conductance quantum. Our findings are consistent with strong electron-electron interactions, stabilizing a fractionalized variant of the Hall effect in three dimensions.Comment: 35 pages with 17 figure

    Anomalous Shubnikov-de Haas effect and observation of the Bloch-Gr\"uneisen temperature in the Dirac semimetal ZrTe5

    Full text link
    Appearance of quantum oscillations (QO) in both thermodynamic and transport properties of metals at low temperatures is the most striking experimental consequence of the existence of a Fermi surface (FS). The frequency of these oscillations and the temperature dependence of their amplitude provides essential information about the FS topology and fermionic quasiparticle properties. Here, we report the observation of an anomalous suppression of the QO amplitude seen in resistivity (Shubnikov de-Haas effect) at sub-kelvin temperatures in ZrTe5 samples with a single small FS sheet comprising less than 5% of the first Brillouin zone. By comparing these results with measurements of the magneto-acoustic QO and the recovery of the usual Lifshitz-Kosevich behavior of the Shubnikov de-Haas (SdH) effect in ZrTe5_5 samples with a multi-sheet FS, we show that the suppression of the SdH effect originates from a decoupling of the electron liquid from the lattice. On crossing the so-called Bloch-Gr\"uneisen temperature, TBG_BG, electron-phonon scattering becomes strongly suppressed and in the absence of Umklapp scattering the electronic liquid regains Galilean invariance. In addition, we show, using a combination of zero-field electrical conductivity and ultrasonic-absorption measurements, that entering this regime leads to an abrupt increase of electronic viscosity

    Tensile Deformation of Oriented Poly(ε-caprolactone) and Its Miscible Blends with Poly(vinyl methyl ether)

    Get PDF
    The structural evolution of micromolded poly(ε-caprolactone) (PCL) and its miscible blends with noncrystallizable poly(vinyl methyl ether) (PVME) at the nanoscale was investigated as a function of deformation ratio and blend composition using in situ synchrotron smallangle X-ray scattering (SAXS) and scanning SAXS techniques. It was found that the deformation mechanism of the oriented samples shows a general scheme for the process of tensile deformation: crystal block slips within the lamellae occur at small deformations followed by a stressinduced fragmentation and recrystallization process along the drawing direction at a critical strain where the average thickness of the crystalline lamellae remains essentially constant during stretching. The value of the critical strain depends on the amount of the amorphous component incorporated in the blends, which could be traced back to the lower modulus of the entangled amorphous phase and, therefore, the reduced network stress acting on the crystallites upon addition of PVME. When stretching beyond the critical strain the slippage of the fibrils (stacks of newly formed lamellae) past each other takes place resulting in a relaxation of stretched interlamellar amorphous chains. Because of deformation-induced introduction of the amorphous PVME into the interfibrillar regions in the highly oriented blends, the interactions between fibrils becomes stronger upon further deformation and thus impeding sliding of the fibrils to some extent leading finally to less contraction of the interlamellar amorphous layers compared to the pure PCLNational Natural Science Foundation of China (21204088 and 21134006). This work is within the framework of the RCUK/EPSRC Science Bridges China project of UK−China Advanced Materials Research Institute (AMRI)
    corecore