29 research outputs found

    Theory of magnon motive force in chiral ferromagnets

    Get PDF
    We predict that magnon motive force can lead to temperature dependent, nonlinear chiral damping in both conducting and insulating ferromagnets. We estimate that this damping can significantly influence the motion of skyrmions and domain walls at finite temperatures. We also find that in systems with low Gilbert damping moving chiral magnetic textures and resulting magnon motive forces can induce large spin and energy currents in the transverse direction

    Parafermion stabilizer codes

    Get PDF
    We define and study parafermion stabilizer codes which can be viewed as generalizations of Kitaev's one dimensional model of unpaired Majorana fermions. Parafermion stabilizer codes can protect against low-weight errors acting on a small subset of parafermion modes in analogy to qudit stabilizer codes. Examples of several smallest parafermion stabilizer codes are given. A locality preserving embedding of qudit operators into parafermion operators is established which allows one to map known qudit stabilizer codes to parafermion codes. We also present a local 2D parafermion construction that combines topological protection of Kitaev's toric code with additional protection relying on parity conservation

    Stabilization and control of Majorana bound states with elongated skyrmions

    Get PDF
    We show that elongated magnetic skyrmions can host Majorana bound states in a proximity-coupled two-dimensional electron gas sandwiched between a chiral magnet and an ss-wave superconductor. Our proposal requires stable skyrmions with unit topological charge, which can be realized in a wide range of multilayer magnets, and allows quantum information transfer by using standard methods in spintronics via skyrmion motion. We also show how braiding operations can be realized in our proposal

    Analog neural network based on memristor crossbar arrays

    Get PDF
    In this paper, a new feed forward analog neural network is designed using a memristor based crossbar array architecture. This structure consists of positive and negative polarity connection matrices. In order to show the performance and usefulness of the proposed circuit, it is considered a sample application of iris data recognition. The proposed neural network implementation is approved by the simulation in Cadence design environment using 0.35µm CMOS technology. The results obtained are promising for the implementation of high density neural network.This work is part of a project that has received funding from the European Union’s H2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement #69117

    Magnetic skyrmion bubble motion driven by surface acoustic waves

    Get PDF
    We study the dynamical control of a magnetic skyrmion bubble by using counter-propagating surface acoustic waves (SAWs) in a ferromagnet. First, we determine the bubble mass and derive the force due to SAWs acting on a magnetic bubble using Thiele\u27s method. The force that pushes the bubble is proportional to the strain gradient for the major strain component. We then study the dynamical pinning and motion of magnetic bubbles by SAWs in a nanowire. In a disk geometry, we propose a SAWs-driven skyrmion bubble oscillator with two resonant frequencies

    Minimal and Robust Composite Two-Qubit Gates with Ising-Type Interaction

    Full text link
    We construct a minimal robust controlled-NOT gate with an Ising-type interaction by which elementary two-qubit gates are implemented. It is robust against inaccuracy of the coupling strength and the obtained quantum circuits are constructed with the minimal number (N=3) of elementary two-qubit gates and several one-qubit gates. It is noteworthy that all the robust circuits can be mapped to one-qubit circuits robust against a pulse length error. We also prove that a minimal robust SWAP gate cannot be constructed with N=3, but requires N=6 elementary two-qubit gates.Comment: 7 pages, 2 figure

    Dynamical invariants for quantum control of four-level systems

    Full text link
    We present a Lie-algebraic classification and detailed construction of the dynamical invariants, also known as Lewis-Riesenfeld invariants, of the four-level systems including two-qubit systems which are most relevant and sufficiently general for quantum control and computation. These invariants not only solve the time-dependent Schr\"odinger equation of four-level systems exactly but also enable the control, and hence quantum computation based on which, of four-level systems fast and beyond adiabatic regimes.Comment: 11 pages, 5 table

    Stability of skyrmion lattices and symmetries of quasi-two-dimensional chiral magnets

    Get PDF
    Recently there has been substantial interest in realizations of skyrmions, in particular in quasi-two-dimensional (2D) systems due to increased stability resulting from reduced dimensionality. A stable skyrmion, representing the smallest realizable magnetic texture, could be an ideal element for ultradense magnetic memories. Here we use the most general form of the quasi-2D free energy with Dzyaloshinskii-Moriya interactions constructed from general symmetry considerations reflecting the underlying system. We predict that the skyrmion phase is robust and it is present even when the system lacks the in-plane rotational symmetry. In fact, the lowered symmetry leads to increased stability of vortex-antivortex lattices with fourfold symmetry and in-plane spirals, in some instances even in the absence of an external magnetic field. Our results relate different hexagonal and square cell phases to the symmetries of materials used for realizations of skyrmions. This will give clear directions for experimental realizations of hexagonal and square cell phases, and will allow engineering of skyrmions with unusual properties. We also predict striking differences in gyrodynamics induced by spin currents for isolated skyrmions and for crystals where spin currents can be induced by charge carriers or by thermal magnons. We find that under certain conditions, isolated skyrmions can move along the current without a side motion which can have implications for realizations of magnetic memories

    Visual Affect Around the World: A Large-scale Multilingual Visual Sentiment Ontology

    Get PDF
    Every culture and language is unique. Our work expressly focuses on the uniqueness of culture and language in relation to human affect, specifically sentiment and emotion semantics, and how they manifest in social multimedia. We develop sets of sentiment- and emotion-polarized visual concepts by adapting semantic structures called adjective-noun pairs, originally introduced by Borth et al. (2013), but in a multilingual context. We propose a new language-dependent method for automatic discovery of these adjective-noun constructs. We show how this pipeline can be applied on a social multimedia platform for the creation of a large-scale multilingual visual sentiment concept ontology (MVSO). Unlike the flat structure in Borth et al. (2013), our unified ontology is organized hierarchically by multilingual clusters of visually detectable nouns and subclusters of emotionally biased versions of these nouns. In addition, we present an image-based prediction task to show how generalizable language-specific models are in a multilingual context. A new, publicly available dataset of >15.6K sentiment-biased visual concepts across 12 languages with language-specific detector banks, >7.36M images and their metadata is also released.Comment: 11 pages, to appear at ACM MM'1
    corecore