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Stabilization and control of Majorana bound states with elongated skyrmions

Utkan Güngördü,* Shane Sandhoefner, and Alexey A. Kovalev
Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln,

Nebraska 68588, USA

(Received 12 October 2017; published 16 March 2018)

We show that elongated magnetic skyrmions can host Majorana bound states in a proximity-coupled two-
dimensional electron gas sandwiched between a chiral magnet and an s-wave superconductor. Our proposal
requires stable skyrmions with unit topological charge, which can be realized in a wide range of multilayer
magnets, and it allows quantum information transfer by using standard methods in spintronics via skyrmion
motion. We also show how braiding operations can be realized in our proposal.

DOI: 10.1103/PhysRevB.97.115136

I. INTRODUCTION

Majorana bound states (MBSs) offer a promising architec-
ture for realization of a topological quantum computer and
memory. Such architecture uses non-Abelian anyons to encode
and manipulate quantum information [1]. Since Kitaev’s toy
model for creating MBSs using the unpaired sites at the ends of
a spinless p-wave superconducting wire, it has been shown that
a conventional s-wave superconductor with spin-orbit coupling
(SOC) subject to a Zeeman or proximity-induced exchange
field can have effective p-wave pairing and thus can also sup-
port these nonlocal quasiparticles [2–10]. In systems lacking an
extrinsic SOC, an effective SOC can also be provided through
a nonuniform magnetic texture or field [4,11,12]. Recently, it
has been shown that a magnetic texture provided by a skyrmion
is suitable for stabilizing MBSs [13].

Control of magnetic textures, such as domain walls, bub-
bles, and skyrmions, is a well-studied subject in spintronics.
MBSs bound to these metastable magnetic solitons can be
controlled by well-established methods in spintronics. Among
these topological magnetic structures, magnetic skyrmions
have recently seen a surge of interest since their first exper-
imental observation [14,15]. The ultralow threshold currents
∼105 A/m2 required to move skyrmions, and their ability to
deform their shape to move around defects, makes skyrmions
an attractive alternative to magnetic domain walls in spintronic
applications [16,17]. Skyrmions can be driven by a wide range
of methods such as charge currents [18] and gradients of
temperature [19–21] and magnetic field [22]. Skyrmions have
been experimentally driven close to 100 m/s velocities using
spin-polarized charge currents at room temperature [23].

Chiral magnets with Dzyaloshinskii-Moriya (DM) inter-
action [24,25] prefer skyrmions or antiskyrmions [26] with
unit topological charge, i.e., a single winding number and a
single spin flip from the core to the outer region in the radial
direction. However, skyrmions with a winding number 2 can be
stabilized in dipolar magnets [27] and frustrated magnets [28].
In a case with rotational symmetry, only skyrmions with even
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winding numbers and high odd spin-flip numbers can be used
to stabilize MBSs in a proximity-coupled conventional s-wave
superconductor [13].

In this paper, we show that elongated skyrmions, which
can be stabilized in ordinary chiral magnets [26,29–33], can
act as an effective “quantum wire,” and under the right
conditions realize Kitaev’s toy model [34], locally hosting a
pair of Majorana bound states at its ends. It is known that
such effective quantum wires can also be formed using a
nonuniform magnetic field generated by an array of mag-
netic tunnel junctions (MTJs) [12]. However, this method
allows stabilization and manipulation of MBSs only in the
region containing active MTJs, which are fixed and cannot
be moved. Magnetic skyrmions, on the other hand, remain
stable once created and do not require the presence of a
fine-tuned, nonuniform external field. Furthermore, they can
be manipulated by injecting uniform spin currents or applying
field or temperature gradients, which are standard experimental
tools widely available in spintronics.

This paper is organized as follows. In Sec. II, we describe
the physical setup we propose to realize MBSs and the model
we use to describe it. In the following section, we give our
numerical results. In Sec. IV, we describe how to do braiding
of MBSs. Finally, Sec. V concludes the paper.

II. MODEL

We consider a two-dimensional electron gas (2DEG) sand-
wiched between a conventional s-wave superconductor and a
chiral magnet nanotrack hosting a skyrmion, with a uniform
magnetic field applied along the z axis (see Fig. 1). We
remark that in principle in our proposal it is also possible
to use a semiconductor wire in regions with a ferromagnetic
nanotrack rather than a 2DEG [10]. The 2DEG is modeled by
the Bogoliubov–de Gennes (BdG) Hamiltonian

H =
[

p2

2m
− μ − αR

h̄
(ez × p) · σ

]
τz

+�eiϕτ+ + �e−iϕτ− + 1

2
gμBBσz − J n · σ (1)
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FIG. 1. Spin density n. The arrows show the in-plane component
and contours show the out-of-plane component.

in the Nambu spinor basis � = (ψ†
↑,ψ

†
↓,ψ↓, − ψ↑), where ψ†

α

is the creation operator with spin α ∈ {↑ , ↓}, p = −ih̄∇, m

is the effective electron mass, μ is the chemical potential, αR is
the strength of the Rashba SOC, �eiϕ is the superconducting
pairing potential, J and n = n(x,y) are the strength and
direction of the proximity-induced exchange field due to the
presence of the ferromagnet, μB is the Bohr magneton, and
B is the strength of the applied uniform magnetic field along
the z axis. σi and τi are Pauli matrices that act on spin and
particle-hole subspaces, respectively. In what follows, we will
take ϕ = 0 without loss of generality. We will also focus on
the case of αR = 0 first.

Realization of Kitaev’s nonlocal Majorana fermions re-
quires a “spinless” system with p-wave pairing at the Fermi
level. These criteria can be satisfied in an s-wave superconduc-
tor with spin-orbit coupling (SOC) with an applied magnetic
field [6,8,34,35]. The presence of a nonuniform magnetic tex-
ture in Eq. (1) provides an effective SOC. This can be seen by
going into a reference frame in which the effective “exchange
field” M ≡ −J n + gμBBez/2 is uniform and aligned with the
z axis by making a local gauge transformation M → R̂M ≡
Mez. The spatial and temporal dependence of the magnetic
texture induces the covariant derivative ∂μ → ∂μ + Û∂μÛ †,
where Û = eiσyMθ/2eiσzMφ/2 is the SU(2) representation (in the
spin space) of the real-space rotation matrix R̂, and Mφ,Mθ

are components of M in spherical coordinates, resulting in a
texture-dependent shift in momentum. In the rotated frame, this
gauge potential can be interpreted as the SU(2) vector field,

H =
[

( p − eA)2

2m
+ eφ − μ

]
τz + �τx + Mσz, (2)

where the four-vector potential is determined by the magnetic
texture as A ≡ ih̄Û∇Û †/e, φ ≡ −ih̄Û∂t Û

†/e. The terms
linear in momentum can be interpreted as an effective SOC,
which in turn allows the formation of MBSs [4,11,12]. For a
slowly changing magnetic texture, which we require in order to
avoid excitations that can destroy MBSs, spin scalar potential
φ can be neglected. This leads to a restriction on the maximum
velocity of skyrmion motion, h̄vx/R

x
c � �, where vx is the

skyrmion velocity and Rx
c is the skyrmion core radius along

the x direction. The adiabaticity assumption further restricts
the skyrmion speed. Since we are concerned with MBSs well
below the topological gap, we can get a rough estimate for
transitions [36] by using the Landau-Zener formula [37,38],
which yields the condition Jvx/R

x
c � (E1 − E0)2/h̄, where

E0 and E1 are the energies of the ground state and the first
excited level.

To estimate the position of MBSs, we study the topological
gap. For a system with a nonuniform exchange field, the gap
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FIG. 2. Squared amplitude |�|2, length in units of a with a =
10 nm for a skyrmion with a core radius ofRy

c = 50 nm,Rx
c = 490 nm,

� = 0.25 meV, B̃ = 0.87, J̃ = 1, and μ̃ = 0.2. The white solid
line is the border between topological and nontopological regions as
determined by Eq. (3). The black solid lines indicate the boundaries
of the ferromagnetic nanotrack.

is approximately given by [12]

Eg ≈ 2

⎡
⎣M −

√(
μ − h̄2(∂i M)2

8mM2

)2

+ �2

⎤
⎦, (3)

when the effective exchange field M is smooth. The linear
closing and reopening of the gap as M , μ, and � vary is
indicative of a topological phase transition [3,10]. Regions with
positive gap (Eg > 0) are in topological phase, which may host
MBSs depending on the geometry of the region [12,13] (see
Fig. 2).

The magnetization on the ferromagnet side is described by
the free energy F = ∫

d2r F where the free-energy density is
given by

F = A

2
(∂in)2 + (D̂ei) · (n × ∂in) − Keff

u n2
z + μ0MsHnz.

(4)

Here, A is the ferromagnetic exchange strength, n denotes the
direction of the spin density vector, D̂ is the DM tensor [26],
Keff

u ≡ Ku − μ0M
2
s /2 is the effective perpendicular easy-

axis anisotropy with contributions from magnetocrystalline
anisotropy and dipolar interactions, and μ0H is the strength
of the applied magnetic field along the z axis. Chiral magnets,
which can often be described by Eq. (4), can host triangular-
and square-lattice of skyrmions (commonly called skyrmion
crystal or SkX phase) depending on the strength of the
anisotropy and magnetic field [14,15]. Isolated skyrmions can
also be generated as metastable quasiparticle excitations. In
both cases, symmetries of skyrmions reflect the underlying
symmetries of the system. In particular, systems with broken
either surface- or bulk-inversion symmetry prefer rotation-
ally symmetric Néel (hedgehoglike) or Bloch (vortexlike)
-type skyrmions, respectively. Additional asymmetries, which
can be due to the cutting angle of the sample or applied
strain [26,39,40], can induce interesting deformations, such as
elongation of skyrmions along a fixed axis or even skyrmions
with negative charge, i.e., antiskyrmions [26].

For the proposal described below, it is important that
magnetic skyrmions can be driven by spin currents, as well as
by gradients of magnetic field, temperature, and stress. One of
the advantages of skyrmions over domains walls in spintronic
memory device applications is their flexibility, which allows
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FIG. 3. (a) Squared amplitude |�|2 in units of 1/a2 along the middle horizontal line for Rx
c = 490 nm, using parameters given in the caption

of Fig. 2. The large peaks correspond to the MBSs localized at the edges of the elliptic topological region. (b) The energy spectrum En for
Rx

c = 490 nm. (c) Ground state (E0) and first excited energy levels (E1) as a function of the horizontal core radius Rx
c in units of a. (d)–(f)

Similar plots for αR = 2.5 meV nm.

them to deform their shapes to avoid defects. Due to this
flexibility, when the expected size of the skyrmion is larger than
the width of the racetrack, skyrmions adapt to the presence of
the repulsive force due to the edges by becoming elongated.
This way of generating elongated skyrmions has the advantage
that the axis of elongation can be controlled by moving
the skyrmion through sections of the racetrack (see Fig. 1).
We confirm elongation of skyrmions due to constrictions
with micromagnetic simulations using mumax3 [41]. The
above-mentioned dynamical properties of skyrmions will be
employed in this proposal in order to manipulate MBSs.

III. RESULTS

For our setup, we consider a skyrmion hosted in the
chiral ferromagnetic layer similar to [13,42]. We model the
magnetic texture with the ansatz n = (sin nθ cos nφ, sin nθ

sin nφ, cos nθ ), where the components of the spin density are
given by nφ = φ, nθ = 2 arctan(R2

c /r2) [43], Rc ∼ R/2 is the
core radius where spins become parallel to the plane, and R is
the skyrmion radius. We model elongation as stretching of a
rotationally symmetric skyrmion, as shown in Fig. 1. We ignore
the backaction of the superconductor on the chiral magnet,
and numerically solve the BdG equation for the eigenenergies
and corresponding wave functions using the ansatz for a
given fixed magnetic texture [44]. We will use the following
definitions to express the parameters in dimensionless units:
B̃ ≡ gμBB/2�, J̃ ≡ J/�, and μ̃ ≡ μ/�.

A pair of Majorana bound states can be localized at the ends
of a topologically nontrivial region, which works as an effective
quantum wire, as shown in Fig. 2 with the white line. There
are two cases we consider, one with no extrinsic Rashba SOC
and one that includes extrinsic Rashba SOC. Figure 2 shows
the squared amplitude for the case with no extrinsic Rashba
SOC, which has been tuned to achieve Majorana bound states.
Figure 3 shows the squared amplitude and energy spectrum for
this case, as well as for the case with extrinsic Rashba SOC.

When extrinsic Rashba SOC is included, MBSs have improved
localization, and the squared amplitude along the horizontal
between the two MBSs flattens considerably as compared to
the case with no extrinsic SOC.

We find that such MBSs can be stabilized over a wide
range of elongation, once the strength of the external magnetic
field is tuned with regard to the exchange interaction. The
spacing between the MBSs is then determined by the amount
of elongation.

There is flexibility in parameter tuning for our setup.
Figure 3 shows how the ground-state energy level and the
first excited energy level change as the elongation is varied.
Zero modes are achieved for a skyrmion with a vertical core
radius of R

y
c = 50 nm, � = 0.25 meV, B̃ = 0.87, J̃ = 1 for

simplicity, and μ̃ = 0.2, and Rx
c in the range from 400 to

1000 nm. The magnitude of the energy gap E1 − E0 in units
of the superconducting gap � is around 0.08 over this range.
Note that the energy levels and the gap can be scaled as H →
λH through replacements M → λM , μ → λμ, αR → √

λαR ,
� → λ�, {x,y} → {x,y}√λ, which can be useful in order to
find the best material parameters [12]. These values are within
a reasonable range [10,12,13].

Obtaining MBSs using different values for J̃ is possible, as
long as Eq. (3) admits closing and reopening of the gap. We
remark, however, that using a different value for J̃ changes
the size of the MBSs. This is important because the size of
the ellipselike topological region shown in Fig. 2 should be
adjusted such that it hosts one and only one mode on each side.
A too narrow topological region does not allow MBSs to form,
and a too wide topological region allows multiple MBSs that
hybridize. For a given J̃ , the shape of the topological region
can be adjusted by choosing a different Rc

y with a constriction
of a different size, as well as tuning μ and B.

In Fig. 3(c), we also plot the energy levels as a function of the
distance between MBSs. As the overlap integral between two
neighboring MBSs decays exponentially [36] (this behavior
is also true for MBSs hosted at the ends of two different
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FIG. 4. Hybridization energies ij of two MBSs hosted by two
different skyrmions in the presence of Rashba SOC, as a function
of the spatial separation between skyrmions along the x axis, d

(skyrmion radius taken to be Rx
c ).

skyrmions, as shown in Fig. 4), we observe that the ground-
state energy becomes small for large Rx

c . However, it should
be noted that the gap also decays in a similar manner, which
makes too large Rx

c undesirable. As indicated in Eq. (2) and
the discussion that follows, the gradient of the magnetic texture
∂iM provides an effective SOC, which is required to stabilize
MBSs [4,11,12]. The gap’s exponential decay observed in
Fig. 3(c) is caused by the weakening of the effective SOC,
which is provided by the texture gradient (A ∼ ∂in ∼ 1/Rx

c )
as the size of the skyrmion increases along the horizontal
direction. The presence of an extrinsic SOC stabilizes the gap
and improves the localization, which leads to better ground-
state energetics as shown in the lower plots in Fig. 3.

Figures 3(c) and 3(f), taken along with the scaling relations,
show the stability of the MBSs for skyrmions with different
aspect ratios and sizes. In the absence of an extrinsic SOC,
we observe that perturbations in skyrmion size can lead to
energetic instabilities. On the other hand, an extrinsic SOC
provides a stable operation regime for aspect ratios greater
than ≈10 : 1.

IV. REALIZATION OF BRAIDING

A. Through Coulomb interaction of Majorana modes

Realization of a topological quantum computer relies on
non-Abelian operations through braiding of MBSs. Since
implementation of a nontrivial quantum gate requires more
than two MBSs, we will discuss braiding operations in a setup
with two elongated skyrmions. A typical way of braiding MBSs
at the ends of two topological regions involves different regions
crossing each other [6], as illustrated in Fig. 5. However, this is
not possible with our “rigid” regions because such a crossing
would involve driving one skyrmion through the other, which
would destroy the skyrmions and MBSs. We will instead use an
array of Cooper pair boxes, which are superconducting arrays
coupled to a large superconductor using a split Josephson
junction, such that the magnetic flux through the hole can be
used to tune the Josephson energy EJ . Such a setup can be
used to realize non-Abelian braiding operations [45,46], and
we reproduce the details here for completeness.

γ1 γ2 γ3 γ4

FIG. 5. A double-braiding of two MBSs at the ends of two topo-
logical regions in a typical p-wave superconductor in the presence
of a vortex, corresponding to two sequential elementary braiding
operations given in Eq. (9). Note that the topological regions cross
each other at intermediate times during the process.

For our proposal, the setup would consist of an elongated
skyrmion on each Cooper pair box, with the direction of
elongation controlled by the nanotrack on each box. One
possible configuration is shown in Fig. 6.

The effective low-energy Hamiltonian of such a trijunction
can be written as [46]

Heff = iEM (γ ′
1γ

′
2 cos α12 + γ ′

2γ
′
3 cos α23 + γ ′

3γ
′
1 cos α31)

− i

3∑
k=1

Ukγkγ
′
k, (5)

where EM is the tunnel coupling, Uk ∝ e−√
8EJ /EC is the

Coulomb coupling, EJ = 2E0 cos(π�/�0) is the Joseph-
son coupling with E0 the strength of the coupling, EC =
e2/2C is the single-electron charging energy with C the
capacitance, �0 = h/2e is the flux quantum, and the phase
differences αij are given by α12 = −(π/2�0)(�1 + �2 +
2�3), α23 = (π/2�0)(�2 + �3), and α31 = (π/2�0)(�1 +
�3). The Coulomb coupling Uk ∈ [Umin,Umax] decays ex-
ponentially with the applied flux, thus Umax  Umin for the
“on” and “off” states. It is further assumed that the Coulomb
coupling is weaker than the tunnel coupling (EM  Uk). As
a result, in such a scheme three modes are fused and the four
useful modes are γ1, γ2, γ3, and (γ

′
1 + γ

′
2 + γ

′
3)/

√
3.

After the flux-controlled Coulomb couplings are turned
on and off as depicted in Fig. 6, the unitary adiabatic time
evolution takes Majorana operators from γi to Û †γiÛ in the

Φ1Φ3

γ1

γ′
1

γ′
2

γ2 γ′
3 γ3

Φ1 Φ2

FIG. 6. Schematic depiction of the three Cooper pair boxes
connected at a trijunction. Each Cooper pair box hosts a pair of
MBSs and is connected to a bulk superconductor via split Josephson
junctions. Coulomb coupling strength can be modulated by changing
the applied magnetic flux �i at each junction.
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Heisenberg picture, where

Ûij = 1 + γiγj√
2

+ O(ε) (6)

is the unitary braiding operator [47] and ε = Umin/Umax [46].
Since [Ûij ,Ûjk] = γiγk , such operations can be used to realize
quantum gates using an array of MBSs.

To braid γ2 and γ3 in Fig. 6, the following sequence needs to
be performed: first, to ensure adiabaticity, �3 must be −�max

at the beginning of the protocol (where �max < �0/2); turn
�1 to �max, turn �3 off, turn �2 to �max, turn �1 off, turn �3

to −�max, turn �2 off [46]. During the braiding operation, γ1

and γ ′
1 act as ancillary MBSs, which ensure that there is at least

one coupling on and one off at each step, such that a twofold
degeneracy in the system is maintained.

B. Using measurements

Aside from the setup that uses Cooper pair boxes de-
scribed in the previous section, it is also possible to real-
ize measurement-based braiding in different setups. This is
achieved by coupling a pair of MBSs to a qubit or a quantum
dot. For example, the state of the MBSs can then be projected
by measuring the qubit. Various methods for measuring MBSs
have been suggested [48–51].

The basic building block of the measurement-based proto-
col in [48] is to perform projective measurements of the op-
erator iγiγj . Such measurements can be realized in Majorana
SQUIDs, MBSs connected with metal bridges forming closed
loops [48], either by measuring the persistent current in the
SQUID loop through flux measurements, or by measuring the
conductance [48]. The operation proceeds only if the results
of all measurements are +1. A measurement can be described
by the operator

P̂ (±)
γiγj

= 1 ± iγiγj

2
, (7)

which acts as an identity (null) operator on the ±1 (∓1)
eigensubspace of iγiγj . For example, the following sequence
of measurements leads to a nontrivial quantum operation:

P̂
(+)

γ
′
1 γ1

P̂
(+)

γ
′
1 γ

′
3
P̂

(+)

γ
′
2 γ

′
1
|ψ〉 = 1

23/2
Ûγ

′
2 γ

′
3
|ψ〉 , (8)

where

Ûij = 1 + γiγj√
2

(9)

is the unitary braiding operator for γi and γj . Since [Ûij ,Ûjk] =
γiγk , such operations can be used to realize quantum gates
using an array of MBSs.

For applications in quantum information, we have to limit
ourselves to even- or odd-parity states. This is due to parity
conservation (we neglect quasiparticle poisoning or stray
quasiparticle tunneling in and out of the system), i.e., the total
fermion number of the system remains even or odd [52,53].
Since the operation Ûij involves two “halves” of the two
fermions hosted in each skyrmion, it mixes their states.

Since skyrmions can be moved by a variety of methods,
we mention that it is possible to move our MBSs by moving
the skyrmions that host them. For the set of parameters used
for numerical calculations in the previous section, we estimate
that the Landau-Zener condition limits the skyrmion velocity
as vx � 1.2 km/s. This is well above the typical velocities for
a skyrmion driven by a current or a temperature gradient. In
addition, the skyrmion motion should not be too slow as driving
skyrmions at vx ∼ 0.1 m/s over the length of 1 μm would take
∼10 μs. This time needs to be well below the decoherence
times [36,54].

V. CONCLUSION

We have proposed a way to create Majorana bound states
using a conventional s-wave superconductor and elongated
skyrmions in a typical chiral magnet with the Dzyaloshinskii-
Moriya interaction. Despite the current lack of experiments
coupling magnetic skyrmions with superconductors, we expect
our proposal can be realized in the foreseeable future given
that superconductors have been coupled to ferromagnets [55].
A qubit based on such a realization should benefit from
the topological stability of skyrmions and the robustness of
quantum operations based on Majorana bound states. Elon-
gated skyrmions can be readily created and manipulated in
nanotracks of chiral magnets. While the magnetic texture
induced effective SOC is sufficient to realize MBSs, we find
that only a setup with extrinsic SOC results in a robust behavior
suitable for practical applications, in terms of an energy gap and
localization of MBSs. Braiding of the MBSs can be realized
through the Coulomb interaction of MBSs or a sequence of
projective operations.

Disorder may hinder the formation of MBSs by creating
additional zero modes localized at random locations. Several
possible solutions have been suggested, e.g., using supercon-
ductors with weakened disorder, using a tunneling barrier
between superconductor and semiconductor, or using a large-
gap superconductor [56–58]. It might also be necessary to use
smaller skyrmions, which should be possible as the size of
skyrmions can be tuned over a wide range.
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